Giải bài 10 trang 29 vở thực hành Toán 8

Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x.

Đề bài

Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x.

\(A = {\left( {x + 2} \right)^2}\;-{\left( {x-2} \right)^2}\;-8x\).

Phương pháp giải - Xem chi tiết

- Sử dụng hằng đẳng thức bình phương của một tổng: \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\)

- Sử dụng hằng đẳng thức bình phương của một hiệu: \({\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\)

Lời giải chi tiết

Ta có \(A = \left( {{x^2}\; + 4x + 4} \right)-\left( {{x^2}\; - 4x{\rm{ + }}4} \right)-8x\)

\(\begin{array}{*{20}{l}}{ = {x^2}\; + 4x + 4-{x^2}\; + 4x-4-8x}\\\begin{array}{l} = \left( {{x^2}\;-{x^2}} \right) + \left( {4x + 4x-8x} \right) + \left( {4-4} \right)\\ = 0.\end{array}\end{array}\)

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close