Giải bài 7 trang 28 vở thực hành Toán 8Chứng minh rằng với mọi số tự nhiên n, ta có: GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho HocTot.XYZ và nhận về những phần quà hấp dẫn Đề bài Chứng minh rằng với mọi số tự nhiên n, ta có: \({\left( {n + 2} \right)^2}\;-{n^2}\) chia hết cho 4. Phương pháp giải - Xem chi tiết Sử dụng hằng đẳng thức bình phương của một tổng: \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\) Lời giải chi tiết Ta có \({\left( {n + 2} \right)^2}\;-{n^2}\; = \left( {{n^2}\; + 4n + 4} \right)-{n^2}\; = 4n + 4\). Vì \(4\; \vdots \;4\) nên tích 4n chia hết cho 4. Vậy \({\left( {n + 2} \right)^2}\;-{n^2}\) chia hết cho 4.
>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
|