Giải bài 1.55 trang 34 sách bài tập toán 12 - Kết nối tri thức

Cho hàm số (y = frac{{{x^2} + mx + 1}}{{x + m}}). Hàm số đạt cực đại tại (x = 2) khi A. (m = - 1). B. (m = - 3). C. (m in left{ { - 3; - 1} right}). D. (m in emptyset ).

Đề bài

Cho hàm số \(y = \frac{{{x^2} + mx + 1}}{{x + m}}\). Hàm số đạt cực đại tại \(x = 2\) khi

A. \(m =  - 1\)

B. \(m =  - 3\)

C. \(m \in \left\{ { - 3; - 1} \right\}\)

D. \(m \in \emptyset \)

Phương pháp giải - Xem chi tiết

+ Tính đạo hàm cấp 1 và cấp 2 của hàm số.

+ Yêu cầu bài toán tương đương với đạo hàm cấp 1 tại \(x = 2\) bằng 0, đạo hàm cấp 2 tại \(x = 2\) âm. Ta sẽ tìm m thỏa mãn điều kiện này.

Lời giải chi tiết

Ta có \(y' = \frac{{\left( {2x + m} \right)\left( {x + m} \right) - \left( {{x^2} + mx + 1} \right) \cdot 1}}{{{{\left( {x + m} \right)}^2}}} = \frac{{{x^2} + 2mx + {m^2} - 1}}{{{{\left( {x + m} \right)}^2}}}\).

Suy ra:

\(\begin{array}{l}y'' = {\left[ {\frac{{{x^2} + 2mx + {m^2} - 1}}{{{{\left( {x + m} \right)}^2}}}} \right]^\prime } = \frac{{\left( {2x + 2m} \right){{\left( {x + m} \right)}^2} - 2\left( {x + m} \right)\left( {{x^2} + 2mx + {m^2} - 1} \right)}}{{{{\left( {x + m} \right)}^2}}}\\{\rm{    }} = 2x + 2m - \frac{{2\left( {{x^2} + 2mx + {m^2} - 1} \right)}}{{x + m}}\end{array}\).

Để hàm số đạt cực đại tại \(x = 2\) thì \(y'\left( 2 \right) = 0\) và \(y''\left( 2 \right) < 0\).

Ta có \(y'\left( 2 \right) = 0 \Leftrightarrow \frac{{{2^2} + 2m \cdot 2 + {m^2} - 1}}{{{{\left( {2 + m} \right)}^2}}} = 0 \Leftrightarrow 3 + 4m + {m^2} = 0 \Leftrightarrow m =  - 1\) hoặc \(m =  - 3\).

Với \(m =  - 1\) ta có \(y''\left( 2 \right) = 2 \cdot 2 + 2 \cdot \left( { - 1} \right) - \frac{{2\left( {{2^2} + 2\left( { - 1} \right) \cdot 2 + {{\left( { - 1} \right)}^2} - 1} \right)}}{{2 - 1}} = 2 > 0\), do đó \(x = 2\) là một điểm cực tiểu của hàm số.

Với \(m =  - 3\) ta có \(y''\left( 2 \right) = 2 \cdot 2 + 2 \cdot \left( { - 3} \right) - \frac{{2\left( {{2^2} + 2\left( { - 3} \right) \cdot 2 + {{\left( { - 3} \right)}^2} - 1} \right)}}{{2 - 3}} =  - 2 < 0\), do đó \(x = 2\) là một điểm cực đại của hàm số.

Vậy để \(x = 2\) là một điểm cực đại của hàm số thì \(m =  - 3\). Ta chọn đáp án B.

  • Giải bài 1.56 trang 34 sách bài tập toán 12 - Kết nối tri thức

    Cho hàm số (y = {e^{ - frac{{{x^2}}}{2}}}) có đồ thị (left( C right)). Xét các mệnh đề sau: (I): Điểm cực đại của đồ thị (left( C right)) là (left( {0;1} right)). (II): Trục hoành là tiệm cận ngang của đồ thị (left( C right)). (III): Giá trị lớn nhất của hàm số là 1. (IV): Điểm cực đại của đồ thị (left( C right)) là (x = 0). Số mệnh đề đúng trong các mệnh đề trên là A. (4). B. (1). C. (2). D. (3).

  • Giải bài 1.57 trang 34 sách bài tập toán 12 - Kết nối tri thức

    Cho hàm số (y = frac{1}{{sqrt x }}) có đồ thị (left( C right)). Xét các mệnh đề sau: (I): Hàm số nghịch biến trên tập xác định của nó. (II) Trục hoành là tiệm cận ngang của đồ thị hàm số. (III) Trục tung là tiệm cận đứng của đồ thị hàm số. (IV) Hàm số không có cực trị. Số mệnh đề đúng trong các mệnh đề trên là A. 3. B. 1. C. 2. D. 3.

  • Giải bài 1.58 trang 34 sách bài tập toán 12 - Kết nối tri thức

    Cho hàm số \(y = \frac{{2{x^2} - 4x + 2}}{{{x^2} - 6x + 5}}\). Mệnh đề nào sau đây là đúng? A. Đường thẳng \(x = 1\) là tiệm cận đứng của đồ thị hàm số. B. Đồ thị hàm số có hai tiệm cận đứng. C. Đồ thị hàm số không có tiệm cận ngang. D. Đường thẳng \(x = 5\) là tiệm cận đứng của đồ thị hàm số.

  • Giải bài 1.59 trang 34 sách bài tập toán 12 - Kết nối tri thức

    Giá trị lớn nhất của hàm số (y = {x^2} - 8ln x)trên đoạn (left[ {1;e} right]) là A. 1. B. 10. C. (4 - 8ln 2). D. ({e^2} - 8).

  • Giải bài 1.60 trang 35 sách bài tập toán 12 - Kết nối tri thức

    Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên dưới đây: Khẳng định nào dưới đây là sai? A. Giá trị nhỏ nhất của hàm số bằng -2. B. Giá trị lớn nhất của hàm số bằng 5. C. Đồ thị hàm số có hai tiệm cận ngang. D. Điểm cực tiểu của đồ thị hàm số là \(\left( {1;0} \right)\).

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close