Giải bài 16 trang 90 sách bài tập toán 9 - Cánh diều tập 2Cho đường tròn (O) ngoại tiếp tam giác đều ABC. Điểm E nằm trên cung nhỏ BC (E khác B và C). ED là tia đối của tia EB. Chứng minh EC là phân giác của góc AED và EA là phân giác của góc BEC. GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho HocTot.XYZ và nhận về những phần quà hấp dẫn Đề bài Cho đường tròn (O) ngoại tiếp tam giác đều ABC. Điểm E nằm trên cung nhỏ BC (E khác B và C). ED là tia đối của tia EB. Chứng minh EC là phân giác của góc AED và EA là phân giác của góc BEC. Phương pháp giải - Xem chi tiết Chứng minh \(\widehat {AEB} = \widehat {AEC} = {60^o}\)suy ra EA là phân giác của góc BEC. Lời giải chi tiết Ta có tứ giác ABEC nội tiếp đường tròn nên \(\widehat {CED} = \widehat {BAC} = {60^o}( = {180^o} - \widehat {BEC})\). Mặt khác \(\widehat {AEC} = \widehat {CED} = {60^o}\). Do đó, EC là phân giác của góc AED. Tương tự ta có \(\widehat {AEC} = \widehat {ABC} = {60^o}\) và \(\widehat {AEB} = \widehat {ACB} = {60^o}\). Do đó \(\widehat {AEB} = \widehat {AEC} = {60^o}\) hay EA là phân giác của góc BEC.
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
|