Giải bài 34 trang 57 SBT toán 10 - Cánh diều

Xét hệ tọa độ \(Oth\) trong mặt phẳng, trong đó trục \(Ot\) biểu thị thời gian \(t\) (tính bằng giây) và trục \(Oh\) biểu thị độ cao \(h\) (tính bằng mét).

Đề bài

Xét hệ tọa độ \(Oth\) trong mặt phẳng, trong đó trục \(Ot\) biểu thị thời gian \(t\) (tính bằng giây) và trục \(Oh\) biểu thị độ cao \(h\) (tính bằng mét). Một quả bóng được đá lên từ điểm \(A\left( {0;0,3} \right)\) và chuyển động theo quỹ đạo là một cung parabol. Quả bóng đạt độ cao 8m sau 1 giây, và đạt độ cao 6m sau 2 giây. Trong khoảng thời gian nào (tính bằng giây) thì quả bóng ở độ cao lơn hơn 5m và nhỏ hơn 7m (làm tròn kết quả đến hàng phần nghìn)?

Phương pháp giải - Xem chi tiết

Lập đồ thị hàm số biểu thị độ cao phụ thuộc vào thời gian

Giải bất phương trình

Lời giải chi tiết

+ Độ cao h phụ thuộc vào thời gian t theo công thức hàm số sau:

\(h\left( t \right) =  - 4,85{t^2} + 12,55t + 0,3\) (m)

+ Quả bóng ở độ cao lớn hơn 5 m và hỏ hơn 7 m nên \(5 < h\left( t \right) < 7\)

+ Giải bất phương trình \( - 4,85{t^2} + 12,55t + 0,3 > 5\) hay \( - 4,85{t^2} + 12,55t - 4,7 > 0\)

Tam thức bậc hai \( - 4,85{t^2} + 12,55t - 4,7\) có hai nghiệm xấp xỉ\({t_1} = 0,454;{t_2} = 2,133\) và có hệ số \(a =  - 4,85 < 0\)

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của \(t\) sao cho tam thức \( - 4,85{t^2} + 12,55t - 4,7\) mang dấu “+” là \(\left( {0,454;2,133} \right)\)

Do đó BPT có tập nghiệm với đầu mút xấp xỉ là \(\left( {0,454;2,133} \right)\)

+ Giải bất phương trình \( - 4,85{t^2} + 12,55t + 0,3 < 7\) hay \( - 4,85{t^2} + 12,55t - 6,7 < 0\)

Tam thức bậc hai \( - 4,85{t^2} + 12,55t - 6,7\) có hai nghiệm xấp xỉ\({t_1} = 0,735;{t_2} = 1,835\) và có hệ số \(a =  - 4,85 < 0\)

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của \(t\) sao cho tam thức \( - 4,85{t^2} + 12,55t - 6,7\) mang dấu “-” là \(\left( { - \infty ;0,753} \right) \cup \left( {1,835; + \infty } \right)\)

Do đó BPT có tập nghiệm với đầu mút xấp xỉ là \(\left( { - \infty ;0,753} \right) \cup \left( {1,835; + \infty } \right)\)

+ Lấy giao của hai tập nghiệm trên, ta có \(t \in \left( {0,454;0,753} \right) \cup \left( {1,835;2,133} \right)\)

Vậy ở trong khoảng thời gian từ 0,454 s đến 0,753 s và từ 1,835 s đến 2,133 s thì quả bóng ở độ cao lớn hơn 5 m và nhỏ hơn 7m.

  • Giải bài 35 trang 57 SBT toán 10 - Cánh diều

    Một tình huống trong huấn luyện pháo binh được mô tả như sau: Trong mặt phẳng tọa độ \(Oxy\) (đơn vị trên hai trục tính theo mét), một viên đạn được bắn từ vị trí \(O\left( {0;0} \right)\) theo quỹ đạo là đường parabol \(y = - \frac{9}{{1\;000\;000}}{x^2} + \frac{3}{{100}}x\). Tìm khoảng cách theo trục hoành của viên đạn so với vị trí bắn khi viên đạn đang ở độ cao lớn hơn 15m (làm tròn kết quả đến hàng phần trăm theo đơn vị mét).

  • Giải bài 33 trang 57 SBT toán 10 - Cánh diều

    Tìm \(m\) để phương trình \( - {x^2} + \left( {m + 2} \right)x + 2m - 10 = 0\) có nghiệm

  • Giải bài 32 trang 57 SBT toán 10 - Cánh diều

    Tìm giao các tập nghiệm của hai bất phương trình ( - 3{x^2} + 7x + 10 ge 0) và ( - 2{x^2} - 9x + 11 > 0)

  • Giải bài 31 trang 56 SBT toán 10 - Cánh diều

    Giải các bất phương trình bậc hai sau

  • Giải bài 30 trang 56 SBT toán 10 - Cánh diều

    Dựa vào đồ thị hàm số bậc hai \(y = f\left( x \right)\) trong mỗi Hình 18a, 18b, 18c, hãy viết tập nghiệm các bất phương trình sau: \(f\left( x \right) > 0;f\left( x \right) < 0;f\left( x \right) \ge 0;f\left( x \right) \le 0\)

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close