Giải bài 4.18 trang 65 SGK Toán 10 tập 1 – Kết nối tri thứcTrong mặt phẳng tọa độ Oxy, cho các điểm A(1; 3), B(2; 4), C(-3; 2). a) Hãy giải thích vì sao các điểm A, B, C không thẳng hàng. b) Tìm tọa độ trung điểm M của đoạn thẳng AB. c) Tìm tọa độ trọng tâm G của tam giác ABC. d) Tìm điểm D(x; y) để O(0; 0) là trọng tâm của tam giác ABD. Đề bài Trong mặt phẳng tọa độ Oxy, cho các điểm A(1; 3), B(2; 4), C(-3; 2). a) Chứng minh rằng A, B, C là ba đỉnh của một tam giác. b) Tìm tọa độ trung điểm M của đoạn thẳng AB. c) Tìm tọa độ trọng tâm G của tam giác ABC. d) Tìm điểm D(x; y) để O(0; 0) là trọng tâm của tam giác ABD. Phương pháp giải - Xem chi tiết a) A, B, C là ba đỉnh của một tam giác \( \Leftrightarrow\) A, B, C không thẳng hàng. \( \Leftrightarrow\) hai vectơ \(\overrightarrow {AB} ,\;\overrightarrow {AC} \) không cùng phương b) Trung điểm M của đoạn thẳng AB có tọa độ là \(\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\) c) Trọng tâm G của tam giác ABC có tọa độ là \(\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3}} \right)\) d) Để O(0; 0) là trọng tâm của tam giác ABD thì \(\left( {0;0} \right) = \left( {\frac{{{x_A} + {x_B} + {x_D}}}{3};\frac{{{y_A} + {y_B} + {y_D}}}{3}} \right)\) Lời giải chi tiết a) Ta có: \(\overrightarrow {AB} = \left( {2 - 1;4 - 3} \right) = \left( {1;1} \right),\;\overrightarrow {AC} = \left( { - 3 - 1;2 - 3} \right) = \left( { - 4; - 1} \right)\) Hai vectơ này không cùng phương (vì \(\frac{1}{{ - 4}} \ne \frac{1}{{ - 1}}\)). Do đó các điểm A, B, C không cùng nằm trên một đường thẳng. Vậy A, B, C là ba đỉnh của một tam giác. b) Trung điểm M của đoạn thẳng AB có tọa độ là \(\left( {\frac{{1 + 2}}{2};\frac{{3 + 4}}{2}} \right) = \left( {\frac{3}{2};\frac{7}{2}} \right)\) c) Trọng tâm G của tam giác ABC có tọa độ là \(\left( {\frac{{1 + 2 + \left( { - 3} \right)}}{3};\frac{{3 + 4 + 2}}{3}} \right) = \left( {0;3} \right)\) d) Để O(0; 0) là trọng tâm của tam giác ABD thì \(\left( {0;0} \right) = \left( {\frac{{{x_A} + {x_B} + {x_D}}}{3};\frac{{{y_A} + {y_B} + {y_D}}}{3}} \right)\) \( \Leftrightarrow \left( {0;0} \right) = \left( {\frac{{1 + 2 + x}}{3};\frac{{3 + 4 + y}}{3}} \right)\) \(\begin{array}{l} \Leftrightarrow \left( {0;0} \right) = \left( {1 + 2 + x;3 + 4 + y} \right)\\ \Leftrightarrow \left( {0;0} \right) = \left( {x + 3;y + 7} \right)\\ \Leftrightarrow \left\{ \begin{array}{l}0 = x + 3\\0 = y + 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 3\\y = - 7\end{array} \right.\end{array}\) Vậy tọa độ điểm D là (-3; -7).
|