Giải bài 4.27 trang 58 sách bài tập toán 10 - Kết nối tri thức với cuộc sốngb) Tìm tọa độ tâm I của đường tròn ngoại tiếp và trực tâm H của tam giác ABC. Đề bài Trong mặt phẳng tọa độ \(Oxy\) cho ba điểm \(A(1;2),\,\,B(3;4)\) và \(C(2; - 1).\) a) Chứng minh rằng \(A,\,\,B,\,\,C\) là ba đỉnh của một tam giác. Tìm tọa độ trọng tâm của tam giác đó. b) Tìm tọa độ tâm \(I\) của đường tròn ngoại tiếp và trực tâm \(H\) của tam giác \(ABC.\) Lời giải chi tiết a) Ta có: \(\overrightarrow {AB} = (2;2)\) và \(\overrightarrow {AC} = (1; - 3)\) Do \(\frac{2}{1} \ne \frac{2}{{ - 3}}\) nên các vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) không cùng phương. \( \Rightarrow \) ba điểm \(A,\,\,B,\,\,C\) là ba đỉnh của một tam giác. Gọi \(G\) là trọng tâm của \(\Delta ABC\) nên \(\left\{ {\begin{array}{*{20}{c}}{x = \frac{{1 + 3 + 2}}{3} = 2}\\{y = \frac{{2 + 4 - 1}}{3} = \frac{5}{3}}\end{array}} \right.\) Vậy \(G\left( {2;\frac{5}{3}} \right).\) b) Gọi \(I(x;y)\) của đường tròn ngoại tiếp và \(H(x';y')\) là trực tâm của \(\Delta ABC.\) Ta có: \(\left\{ {\begin{array}{*{20}{c}}{I{A^2} = I{B^2}}\\{I{A^2} = I{C^2}}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{{{\left( {x - 1} \right)}^2} + {{\left( {y - 2} \right)}^2} = {{\left( {x - 3} \right)}^2} + {{\left( {y - 4} \right)}^2}}\\{{{\left( {x - 1} \right)}^2} + {{\left( {y - 2} \right)}^2} = {{\left( {x - 2} \right)}^2} + {{\left( {y + 1} \right)}^2}}\end{array}} \right.\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x + y = 5}\\{x - 3y = 0}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = \frac{{15}}{4}}\\{y = \frac{5}{4}}\end{array}} \right.} \right.\) Vậy \(I\left( {\frac{{15}}{4};\frac{5}{4}} \right).\) Ta có: \(\overrightarrow {IH} = 3\overrightarrow {IG} \) \( \Leftrightarrow \left( {x' - \frac{{15}}{4};y' - \frac{5}{4}} \right) = 3\left( {\frac{{ - 7}}{4};\frac{5}{{12}}} \right)\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x' - \frac{{15}}{4} = \frac{{ - 21}}{4}}\\{y' - \frac{5}{4} = \frac{5}{4}}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x' = \frac{{ - 3}}{2}}\\{y' = \frac{5}{2}}\end{array}} \right.\) Vậy \(H\left( {\frac{{ - 3}}{2};\frac{5}{2}} \right).\)
|