Giải bài 6.26 trang 22 SGK Toán 8 tập 2 - Kết nối tri thứcLàm tính nhân phân thức: Đề bài Làm tính nhân phân thức: \(a)\left( { - \frac{{3{\rm{x}}}}{{5{\rm{x}}{y^2}}}} \right).\left( { - \frac{{5{y^2}}}{{12{\rm{x}}y}}} \right)\) \(b)\frac{{{x^2} - x}}{{2{\rm{x}} + 1}}.\frac{{4{{\rm{x}}^2} - 1}}{{{x^3} - 1}}\) Video hướng dẫn giải Phương pháp giải - Xem chi tiết Thực hiện theo quy tắc nhân hai phân thức Lời giải chi tiết \(a)\left( { - \frac{{3{\rm{x}}}}{{5{\rm{x}}{y^2}}}} \right).\left( { - \frac{{5{y^2}}}{{12{\rm{x}}y}}} \right) = \frac{{\left( { - 3{\rm{x}}} \right).\left( { - 5{y^2}} \right)}}{{5{\rm{x}}{y^2}.12{\rm{x}}y}} = \frac{1}{{4{\rm{x}}y}}\) \(b)\frac{{{x^2} - x}}{{2{\rm{x}} + 1}}.\frac{{4{{\rm{x}}^2} - 1}}{{{x^3} - 1}} = \frac{{x\left( {x - 1} \right).\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}{{\left( {2{\rm{x}} + 1} \right).\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{x\left( {2{\rm{x}} - 1} \right)}}{{{x^2} + x + 1}}\)
|