Giải bài 6.28 trang 22 SGK Toán 8 tập 2 - Kết nối tri thứcTìm hai phân thức P, Q thoản mãn: Đề bài Tìm hai phân thức P, Q thoản mãn: \(a)P.\frac{{x + 1}}{{2{\rm{x}} + 1}} = \frac{{{x^2} + x}}{{4{{\rm{x}}^2} - 1}}\) \(b)Q:\frac{{{x^2}}}{{{x^2} + 4{\rm{x}} + 4}} = \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{{x^2} - 2{\rm{x}}}}\) Video hướng dẫn giải Phương pháp giải - Xem chi tiết Áp dụng quy tắc: - Muốn tìm thừa số ta lấy tích chia cho thừa số đã biết. - Muốn tìm số bị chia ta lấy thương nhân với số chia Lời giải chi tiết \(\begin{array}{l}a)P.\frac{{x + 1}}{{2{\rm{x}} + 1}} = \frac{{{x^2} + x}}{{4{{\rm{x}}^2} - 1}}\\P = \frac{{{x^2} + x}}{{4{{\rm{x}}^2} - 1}}:\frac{{x + 1}}{{2{\rm{x}} + 1}}\\P = \frac{{{x^2} + x}}{{4{{\rm{x}}^2} - 1}}.\frac{{2{\rm{x}} + 1}}{{x + 1}}\\P = \frac{{x\left( {x + 1} \right).\left( {2{\rm{x}} + 1} \right)}}{{\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)\left( {x + 1} \right)}}\\P = \frac{x}{{2{\rm{x}} - 1}}\end{array}\) \(\begin{array}{l}b)Q:\frac{{{x^2}}}{{{x^2} + 4{\rm{x}} + 4}} = \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{{x^2} - 2{\rm{x}}}}\\Q = \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{{x^2} - 2{\rm{x}}}}.\frac{{{x^2}}}{{{x^2} + 4{\rm{x}} + 4}}\\Q = \frac{{\left( {x + 1} \right)\left( {x + 2} \right).{x^2}}}{{x\left( {x - 2} \right).{{\left( {x + 2} \right)}^2}}}\\Q = \frac{{x\left( {x + 1} \right)}}{{{x^2} - 4}}\end{array}\)
|