Giải Bài 91 trang 67 sách bài tập toán 7 tập 1 - Cánh diều

Cho các số a, b, c thỏa mãn

Đề bài

Cho các số a, b, c thỏa mãn \(\dfrac{a}{{2{\rm{ }}020}} = \dfrac{b}{{2{\rm{ }}021}} = \dfrac{c}{{2{\rm{ }}022}}\). Chứng tỏ rằng:

\(4(a - b)(b - c) = {(c - a)^2}\).

Phương pháp giải - Xem chi tiết

Ta chứng minh bằng cách áp dụng tính chất dãy tỉ số bằng nhau ở dữ kiện bài toán cho.

Lời giải chi tiết

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{{2{\rm{ }}020}} = \dfrac{b}{{2{\rm{ }}021}} = \dfrac{c}{{2{\rm{ }}022}} = \dfrac{{a - b}}{{2{\rm{ }}020 - 2{\rm{ }}021}} = \dfrac{{b - c}}{{2{\rm{ 021}} - 2{\rm{ }}022}} = \dfrac{{c - a}}{{2{\rm{ 022}} - 2{\rm{ }}020}}\).

Suy ra:

\(\begin{array}{l}\dfrac{{a - b}}{{ - 1}} = \dfrac{{b - c}}{{ - 1}} = \dfrac{{c - a}}{2} \to \left\{ \begin{array}{l}c - a =  - 2(b - c)\\c - a =  - 2(a - b)\end{array} \right.\\ \Rightarrow {(c - a)^2} =  - 2(b - c). - 2(a - b) = 4(a - b)(b - c)\end{array}\)

Vậy \(4(a - b)(b - c) = {(c - a)^2}\).

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close