Giải bài 9.19 trang 62 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Cho hàm số f(x)=xex2+ln(x+1). Tính f(0)f.

Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Cho hàm số f\left( x \right) = x{e^{{x^2}}} + \ln \left( {x + 1} \right). Tính f'\left( 0 \right)f''\left( 0 \right).  

Phương pháp giải - Xem chi tiết

Áp dụng quy tắc tính đạo hàm

{\left( {{e^u}} \right)^\prime } = u'.{e^u};{\left( {\ln u} \right)^\prime } = \frac{{u'}}{u}

Lời giải chi tiết

Đạo hàm f'\left( x \right) = \left( {1 + 2{x^2}} \right){e^{{x^2}}} + \frac{1}{{x + 1}}.

f''\left( x \right) = \left( {6x + 4{x^3}} \right){e^{{x^2}}} - \frac{1}{{{{\left( {x + 1} \right)}^2}}}.

Do đó f'\left( 0 \right) = 2f''\left( 0 \right) =  - 1.   

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

close