Giải bài tập 16 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo

Cho biết bốn đoạn thẳng nối từ một đỉnh của tứ diện đến trọng tâm mặt đối diện luôn cắt nhau tại một điểm gọi là trọng tâm của tứ diện đó. Một phân tử metan CH4 được cấu tạo bởi bốn nguyên tử hydrogen ở các đỉnh của một tứ diện đều và một nguyên tử carbon ở trọng tâm của tứ diện. Góc liên kết là góc tạo bởi liên kết H–C–H là góc giữa các đường nối nguyên tử carbon với hai trong số các nguyên tử hydrogen. Chứng minh rằng góc liên kết này gần bằng 109,5

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho HocTot.XYZ và nhận về những phần quà hấp dẫn

Đề bài

 

 

Cho biết bốn đoạn thẳng nối từ một đỉnh của tứ diện đến trọng tâm mặt đối diện luôn cắt nhau tại một điểm gọi là trọng tâm của tứ diện đó.

Một phân tử metan CH4 được cấu tạo bởi bốn nguyên tử hydrogen ở các đỉnh của một tứ diện đều và một nguyên tử carbon ở trọng tâm của tứ diện.

Góc liên kết là góc tạo bởi liên kết H–C–H là góc giữa các đường nối nguyên tử carbon với hai trong số các nguyên tử hydrogen. Chứng minh rằng góc liên kết này gần bằng 109,5

 

Phương pháp giải - Xem chi tiết

Dựng một hệ trục tọa độ theo đề và dùng công thức tích vô hướng giữa 2 vecto để tìm góc liên kết

 

Lời giải chi tiết

Từ hình vẽ ta thấy góc liên kết là góc (GA,GS)

Ta có: AEBC, SH(ABC){SHAESHBC nên ta có hệ trục tọa độ như hình với với E trùng với gốc tọa độ O

Giả sử các cạnh của tứ diện có độ dài là a

Ta có: SE=AE=AB2BE2=a2(a2)2=a32A(a32;0;0)

HE=AE3=a36H(a36;0;0)

SH=SE2HE2=(a32)2(a36)2=a63S(a36;0;a63)

Lại có: FESE=HEAE=13FH//SA và AF cắt SH tại G nên  GHGS=GFGE=FHSA=HEAE=13

GH=14SH=14.a63=a612G(a36;0;a612)

Do đó: GA=(a33;0;a612)GA=a64

GS=(0;0;a64)GS=a64

Ta có: cos(GA,GS)=a612.a64a64.a64=13(GA,GS)109,5

 

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

close