Giải bài tập 3.29 trang 71 SGK Toán 9 tập 1 - Cùng khám phá

Chứng minh các đẳng thức sau: a) (frac{{xsqrt y + ysqrt x }}{{sqrt {xy} }}:frac{1}{{sqrt x - sqrt y }} = x - y) với x, y dương và (x ne y); b) (frac{a}{{{{left( {a - b} right)}^2}}}sqrt {25{a^4}{{left( {a - b} right)}^4}} = 5{a^3}) với (a ne b); c) (frac{1}{{sqrt z - 2}} - frac{1}{{sqrt z + 2}} = frac{4}{{z - 4}}) với (z ge 0) và (z ne 4).

Tổng hợp Đề thi vào 10 có đáp án và lời giải

Toán - Văn - Anh

Đề bài

Chứng minh các đẳng thức sau:

a) \(\frac{{x\sqrt y  + y\sqrt x }}{{\sqrt {xy} }}:\frac{1}{{\sqrt x  - \sqrt y }} = x - y\) với x, y dương và \(x \ne y\)

b) \(\frac{a}{{{{\left( {a - b} \right)}^2}}}\sqrt {25{a^4}{{\left( {a - b} \right)}^4}}  = 5{a^3}\) với \(a \ne b\)

c) \(\frac{1}{{\sqrt z  - 2}} - \frac{1}{{\sqrt z  + 2}} = \frac{4}{{z - 4}}\) với \(z \ge 0\) và \(z \ne 4\)

Phương pháp giải - Xem chi tiết

a) + Với hai biểu thức A và B không âm, ta có: \(\sqrt {A.B}  = \sqrt A .\sqrt B \).

+ Với các biểu thức A, B, C mà \(A \ge 0,B \ge 0\) và \(A \ne B\), ta có: \(\frac{C}{{\sqrt A  - \sqrt B }} = \frac{{C\left( {\sqrt A  + \sqrt B } \right)}}{{A - B}}\).

b) Với mọi biểu thức đại số A, ta có: \(\sqrt {{A^2}}  = \left| A \right|\).

c) Thực hiện phép trừ hai phân thức với mẫu thức chung là \(\left( {\sqrt z  + 2} \right)\left( {\sqrt z  - 2} \right)\).

Lời giải chi tiết

a) \(\frac{{x\sqrt y  + y\sqrt x }}{{\sqrt {xy} }}:\frac{1}{{\sqrt x  - \sqrt y }}\)\( = \frac{{\sqrt {xy} \left( {\sqrt x  + \sqrt y } \right)}}{{\sqrt {xy} }}:\frac{{\sqrt x  + \sqrt y }}{{{{\left( {\sqrt x } \right)}^2} - {{\left( {\sqrt y } \right)}^2}}}\)\( = \left( {\sqrt x  + \sqrt y } \right).\frac{{x - y}}{{\sqrt x  + \sqrt y }}\)\( = x - y\) (đpcm)

b) \(\frac{a}{{{{\left( {a - b} \right)}^2}}}\sqrt {25{a^4}{{\left( {a - b} \right)}^4}} \)\( = \frac{a}{{{{\left( {a - b} \right)}^2}}}\sqrt {{{\left[ {5{a^2}{{\left( {a - b} \right)}^2}} \right]}^2}} \)\( = \frac{{a.5{a^2}{{\left( {a - b} \right)}^2}}}{{{{\left( {a - b} \right)}^2}}}\)\( = 5{a^3}\)  (đpcm)

c) \(\frac{1}{{\sqrt z  - 2}} - \frac{1}{{\sqrt z  + 2}}\)\( = \frac{{\sqrt z  + 2 - \sqrt z  + 2}}{{\left( {\sqrt z  + 2} \right)\left( {\sqrt z  - 2} \right)}}\)\( = \frac{4}{{z - 4}}\) (đpcm)

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

close