Giải bài tập 4.5 trang 10 SGK Toán 12 tập 2 - Cùng khám pháBiết \(F(x) = {e^x} + {x^2}\) là một nguyên hàm của hàm số \(f(x)\) trên \(\mathbb{R}\) và hàm số \(f'(x)\) liên tục trên \(\mathbb{R}\). Tìm \(\int {f'} (x){\mkern 1mu} dx\). GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho HocTot.XYZ và nhận về những phần quà hấp dẫn Đề bài Biết \(F(x) = {e^x} + {x^2}\) là một nguyên hàm của hàm số \(f(x)\) trên \(\mathbb{R}\) và hàm số \(f'(x)\) liên tục trên \(\mathbb{R}\). Tìm \(\int {f'} (x){\mkern 1mu} dx\). Phương pháp giải - Xem chi tiết Tính đạo hàm của \(F(x)\) để tìm hàm số \(f(x)\), sau đó tích phân \(f'(x)\) để tìm kết quả. Lời giải chi tiết Đạo hàm của \(F(x)\): \(f(x) = F'(x) = {e^x} + 2x\) Do đó: \(\int {f'} (x){\mkern 1mu} dx = f(x) + C = {e^x} + 2x + C\)
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
|