Giải bài tập 5.15 trang 64 SGK Toán 12 tập 2 - Cùng khám pháViết phương trình tham số và phương trình chính tắc (nếu có) của đường thẳng \(d\) trong mỗi trường hợp sau: a) \(d\) đi qua điểm \(M(5;4;1)\) và có vectơ chỉ phương \(\vec a = (2; - 3;1)\). b) \(d\) đi qua hai điểm \(P(1;2;3)\) và \(Q(5;4;4)\). c) \(d\) đi qua điểm \(B(2;0; - 3)\) và song song với đường thẳng \(\Delta :\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = - 3 + 3t}\\{z = 4}\end{array}} \right.\). d) \(d\) đi qua điểm \(A( - 2;3;1)\) và song song với đường thẳng \(\Delta ':\fr GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho HocTot.XYZ và nhận về những phần quà hấp dẫn Đề bài Viết phương trình tham số và phương trình chính tắc (nếu có) của đường thẳng \(d\) trong mỗi trường hợp sau: a) \(d\) đi qua điểm \(M(5;4;1)\) và có vectơ chỉ phương \(\vec a = (2; - 3;1)\). b) \(d\) đi qua hai điểm \(P(1;2;3)\) và \(Q(5;4;4)\). c) \(d\) đi qua điểm \(B(2;0; - 3)\) và song song với đường thẳng \(\Delta :\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = - 3 + 3t}\\{z = 4}\end{array}} \right.\). d) \(d\) đi qua điểm \(A( - 2;3;1)\) và song song với đường thẳng \(\Delta ':\frac{{x - 3}}{2} = \frac{{y + 1}}{1} = \frac{{z - 4}}{3}\). Phương pháp giải - Xem chi tiết Phương trình tham số của đường thẳng đi qua điểm \(A({x_0},{y_0},{z_0})\) và có vectơ chỉ phương \(\vec a({a_1},{a_2},{a_3})\) là: \(\left\{ {\begin{array}{*{20}{l}}{x = {x_0} + {a_1}t}\\{y = {y_0} + {a_2}t}\\{z = {z_0} + {a_3}t}\end{array}} \right.\quad (t \in \mathbb{R})\) Phương trình chính tắc của đường thẳng: \(\frac{{x - {x_0}}}{{{a_1}}} = \frac{{y - {y_0}}}{{{a_2}}} = \frac{{z - {z_0}}}{{{a_3}}}\) Nếu biết hai điểm \(A({x_1},{y_1},{z_1})\) và \(B({x_2},{y_2},{z_2})\), vectơ chỉ phương của đường thẳng là \(\overrightarrow {AB} = ({x_2} - {x_1},{y_2} - {y_1},{z_2} - {z_1})\). Lời giải chi tiết a) Đường thẳng \(d\) đi qua điểm \(M(5;4;1)\) và có vectơ chỉ phương \(\vec a = (2; - 3;1)\): - Phương trình tham số: \(\left\{ {\begin{array}{*{20}{l}}{x = 5 + 2t}\\{y = 4 - 3t}\\{z = 1 + t}\end{array}} \right.\quad (t \in \mathbb{R})\) - Phương trình chính tắc: \(\frac{{x - 5}}{2} = \frac{{y - 4}}{{ - 3}} = z - 1\) b) Đường thẳng \(d\) đi qua hai điểm \(P(1;2;3)\) và \(Q(5;4;4)\): - Vectơ chỉ phương: \(\overrightarrow {PQ} = (5 - 1;4 - 2;4 - 3) = (4;2;1)\) - Phương trình tham số: \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 4t}\\{y = 2 + 2t}\\{z = 3 + t}\end{array}} \right.\quad (t \in \mathbb{R})\) - Phương trình chính tắc: \(\frac{{x - 1}}{4} = \frac{{y - 2}}{2} = z - 3\) c) Đường thẳng \(d\) đi qua điểm \(B(2;0; - 3)\) và song song với đường thẳng \(\Delta :\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = - 3 + 3t}\\{z = 4}\end{array}} \right.\) - Vectơ chỉ phương của đường thẳng \(\Delta \): \(\vec a = (2,3,0)\) - Phương trình tham số của đường thẳng \(d\): \(\left\{ {\begin{array}{*{20}{l}}{x = 2 + 2t}\\{y = 0 + 3t}\\{z = - 3}\end{array}} \right.\quad (t \in \mathbb{R})\) - Phương trình chính tắc: \(\frac{{x - 2}}{2} = \frac{y}{3}\) d) Đường thẳng \(d\) đi qua điểm \(A( - 2;3;1)\) và song song với đường thẳng \(\Delta ':\frac{{x - 3}}{2} = \frac{{y + 1}}{1} = \frac{{z - 4}}{3}\) - Vectơ chỉ phương của \(\Delta '\): \(\vec a = (2,1,3)\) - Phương trình tham số của đường thẳng \(d\): \(\left\{ {\begin{array}{*{20}{l}}{x = - 2 + 2t}\\{y = 3 + t}\\{z = 1 + 3t}\end{array}} \right.\quad (t \in \mathbb{R})\) - Phương trình chính tắc: \(\frac{{x + 2}}{2} = \frac{{y - 3}}{1} = \frac{{z - 1}}{3}\)
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
|