Giải bài tập 6 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạoCho đường thẳng \(d:\frac{{x - 2}}{{ - 1}} = \frac{{y - 1}}{2} = \frac{{z + 3}}{1}\). Vectơ nào sau đây là một vectơ chỉ phương của \(d\)? A. \(\overrightarrow {{u_1}} = \left( {2;1; - 3} \right)\) B. \(\overrightarrow {{u_2}} = \left( { - 2; - 1;3} \right)\) C. \(\overrightarrow {{u_3}} = \left( { - 1;2;1} \right)\) D. \(\overrightarrow {{u_4}} = \left( { - 1;2; - 1} \right)\) Đề bài Cho đường thẳng \(d:\frac{{x - 2}}{{ - 1}} = \frac{{y - 1}}{2} = \frac{{z + 3}}{1}\). Vectơ nào sau đây là một vectơ chỉ phương của \(d\)? A. \(\overrightarrow {{u_1}} = \left( {2;1; - 3} \right)\) B. \(\overrightarrow {{u_2}} = \left( { - 2; - 1;3} \right)\) C. \(\overrightarrow {{u_3}} = \left( { - 1;2;1} \right)\) D. \(\overrightarrow {{u_4}} = \left( { - 1;2; - 1} \right)\) Phương pháp giải - Xem chi tiết Dựa vào phương trình chính tắc, chỉ ra một vectơ chỉ phương của đường thẳng \(d\). Lời giải chi tiết Ta có phương trình của đường thẳng \(d:\frac{{x - 2}}{{ - 1}} = \frac{{y - 1}}{2} = \frac{{z + 3}}{1}\), nên đường thẳng \(d\) có một vectơ chỉ phương là \(\vec a = \left( { - 1;2;1} \right)\). Vậy đáp án đúng là C.
|