Giải bài tập 6.16 trang 19 SGK Toán 9 tập 2 - Cùng khám pháTính nhẩm nghiệm của các phương trình sau: a) \(13,6{x^2} - 15,8x + 2,2 = 0\) b) \(\sqrt 2 {x^2} + \left( {\sqrt 3 + \sqrt 2 } \right)x + \sqrt 3 = 0\) GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho HocTot.XYZ và nhận về những phần quà hấp dẫn Đề bài Tính nhẩm nghiệm của các phương trình sau: a) \(13,6{x^2} - 15,8x + 2,2 = 0\) b) \(\sqrt 2 {x^2} + \left( {\sqrt 3 + \sqrt 2 } \right)x + \sqrt 3 = 0\) Phương pháp giải - Xem chi tiết Dựa vào: Cho phương trình \(a{x^2} + bx + c = 0(a \ne 0)\). - Nếu a + b + c = 0 thì phương trình có nghiệm \({x_1} = 1\) và \({x_2} = \frac{c}{a}\). - Nếu a – b + c = 0 thì phương trình có nghiệm \({x_1} = - 1\) và \({x_2} = - \frac{c}{a}\). Lời giải chi tiết a) \(13,6{x^2} - 15,8x + 2,2 = 0\) Phương trình có a + b + c = 13,6 – 15,8 + 2,2 = 0 nên phương trình có nghiệm \({x_1} = 1\) và \({x_2} = \frac{c}{a} = \frac{{2,2}}{{13,6}} = \frac{{11}}{{68}}\). b) \(\sqrt 2 {x^2} + \left( {\sqrt 3 + \sqrt 2 } \right)x + \sqrt 3 = 0\) Phương trình có a - b + c = \(\sqrt 2 - \left( {\sqrt 3 + \sqrt 2 } \right) + \sqrt 3 \) = 0 nên phương trình có nghiệm \({x_1} = - 1\) và \({x_2} = - \frac{c}{a} = \frac{{\sqrt 3 }}{{\sqrt 2 }} = \frac{{\sqrt 6 }}{2}\) .
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
|