Giải câu hỏi mở đầu trang 32 SGK Toán 12 tập 2 - Chân trời sáng tạo

Trong không gian Oxyz, làm thế nào để xác định một mặt phẳng bằng phương pháp tọa độ?

Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Hoá - Sinh - Sử - Địa

Đề bài

Trong không gian Oxyz, làm thế nào để xác định một mặt phẳng bằng phương pháp tọa độ?

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức đã học.

Lời giải chi tiết

Trong không gian Oxyz, để xác định một mặt phẳng ta cần biết được 1 điểm mà đường thẳng đó đi và một vectơ pháp tuyến của mặt phẳng đó.

  • Giải mục 1 trang 32, 33 SGK Toán 12 tập 2 - Chân trời sáng tạo

    a) Cho vectơ (vec n) khác (vec 0). Qua một điểm ({M_0}) cố định trong không gian, có bao nhiêu mặt phẳng (left( alpha right)) vuông góc với giá của vectơ (vec n)?

  • Giải mục 2 trang 33, 34 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Trong không gian (Oxyz), cho mặt phẳng (left( alpha right)) có cặp vectơ chỉ phương (vec a = left( {{a_1};{a_2};{a_3}} right)), (vec b = left( {{b_1};{b_2};{b_3}} right)). Xét vectơ (vec n = left( {{a_2}{b_3} - {a_3}{b_2};{a_3}{b_1} - {a_1}{b_3};{a_1}{b_2} - {a_2}{b_1}} right)).

  • Giải mục 3 trang 35, 36, 37, 38 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Trong không gian (Oxyz), cho mặt phẳng (left( alpha right)) đi qua điểm ({M_0}left( {1;2;3} right)) và nhận (vec n = left( {7;5;2} right)) làm vectơ pháp tuyến. Gọi (Mleft( {x;y;z} right)) là một điểm tuỳ ý trong không gian. Tính tích vô hướng (vec n.overrightarrow {{M_0}M} ) theo (x,y,z).

  • Giải mục 4 trang 38, 39, 40 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Cho hai mặt phẳng \(\left( \alpha \right)\), \(\left( \beta \right)\) có phương trình là \(\left( \alpha \right):x - 2y + 3z + 1 = 0\) và \(\left( \beta \right):2x - 4y + 6z + 1 = 0\). a) Nêu nhận xét về các vectơ pháp tuyến của hai mặt phẳng trên. b) Cho điểm \(M\left( { - 1;0;0} \right)\). Hãy cho biết các mặt phẳng \(\left( \alpha \right)\), \(\left( \beta \right)\) có đi qua \(M\) không. c) Giải thích tại sao \(\left( \alpha \right)\) song song với \(\left( \beta \right)\).

  • Giải mục 5 trang 41, 42 SGK Toán 12 tập 2 - Chân trời sáng tạo

    Trong không gian \(Oxyz\), cho mặt phẳng \(\left( \alpha \right)\) có phương trình \(Ax + By + Cz + D = 0\) và điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\). Gọi \({M_1}\left( {{x_1};{y_1};{z_1}} \right)\) là hình chiếu vuông góc của \({M_0}\) trên \(\left( \alpha \right)\)(hình dưới đây).

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

close