Giải mục 1 trang 47, 48, 49, 50 Chuyên đề học tập Toán 10 - Kết nối tri thức

Trong mặt phẳng tọa độ, cho hypebol có phương trình chính tắc

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho HocTot.XYZ và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

HĐ1

Trong mặt phẳng tọa độ, cho hypebol có phương trình chính tắc x2a2y2b2=1.

a) Hãy giải thích vì sao, nếu điểm M(x0;y0) thuộc hypebol thì các điểm có tọa độ (x0;y0),(x0;y0),(x0;y0) cũng thuộc hypebol (H.3.12).

b) Tìm tọa độ các giao điểm của hypebol với trục hoành. Hypebol có cắt trục tung hay không? Vì sao?

c) Với điểm M(x0;y0) thuộc hypebol, hãy so sánh |x0| với a

Lời giải chi tiết:

a) Nếu điểm M(x0;y0) thuộc hypebol thì x02a2y02b2=1

x02a2(y0)2b2=1;(x0)2a2y02b2=1;(x0)2a2(y0)2b2=1

hay các điểm có tọa độ (x0;y0),(x0;y0),(x0;y0) cũng thuộc Hypebol.

b)

y=0x2a2=1x=±a

Giao điểm của hypebol với Ox là A1(a;0),A2(a;0).

x=0y2b2=1 Vô lý vì y2b20<1

Vậy hypebol không có giao điểm với trục tung.

c) M(x0;y0) thuộc hypebol thì x02a2y02b2=1

1=x02a2y02b2x02a2x02a2|x0|a

 

Luyện tập 1

Cho hyperbol x264y236=1.

a) Tìm tiêu cự và độ dài các trục

b) Tìm các đỉnh và các đường tiệm cận.

Phương pháp giải:

Phương trình của hypebol x2a2y2b2=1

Trong đó:

+ Tiêu cự: 2c=2a2+b2

+ Độ dài trục thực, trục ảo: 2a,2b

+ Hai đỉnh A1(a;0),A2(a;0)

+ Hai đường tiệm cận y=baxy=bax

Lời giải chi tiết:

Ta có hypebol: x264y236=1

a=8,b=6,c=a2+b2=10

a) + Tiêu cự: 2c=20

+ Độ dài trục thực: 2a=16; trục ảo 2b=12.

b) + Hai đỉnh A1(8;0),A2(8;0)

+ Hai đường tiệm cận y=34xy=34x

 

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

close