Giải mục 4 trang 63 SGK Toán 11 tập 1 - Cánh Diều

Tính (lim left( { - {n^3}} right).)

Lựa chọn câu để xem lời giải nhanh hơn

HĐ 5

Quan sát dãy số \((u_n)\) với \(u_­n = n^2\) và cho biết giá trị của n có thể lớn hơn một số dương bất kì được hay không kể từ một số hạng nào đó trở đi.

Phương pháp giải:

Xác định các giá trị của dãy số dựa vào công thức tính số hạng tổng quát.

Lời giải chi tiết:

Ta có bảng giá trị sau:

n

1

2

3

...

100

...

1001

\(u_n\)

1

4

9

...

10 000

...

1 002 001

Từ đó ta có các nhận xét sau:

+) Kể từ số hạng thứ 2 trở đi thì \(u_n > 1\) .

+) Kể từ số hạng thứ 101 trở đi thì \(u_n > 10 000\).

...

Vậy ta thấy \(u_n\) có thể lớn hơn một số dương bất kì kể từ một số hạng nào đó trở đi.

LT - VD 7

Tính \(\lim \left( { - {n^3}} \right).\)

Phương pháp giải:

Sử dụng định nghĩa về dãy số có giới hạn vô cực.

- Dãy số \(\left( {{u_n}} \right)\) được gọi là có giới hạn \( + \infty \) khi \(n \to  + \infty \) nếu \({u_n}\) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi, kí hiệu \(\mathop {\lim }\limits_{x \to  + \infty } {u_n} =  + \infty \) hay \({u_n} \to  + \infty \) khi \(n \to  + \infty \).

- Dãy số \(\left( {{u_n}} \right)\) được gọi là có giới hạn \( - \infty \) khi \(n \to  + \infty \) nếu \(\mathop {\lim }\limits_{x \to  + \infty } \left( { - {u_n}} \right) =  + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to  + \infty } {u_n} =  - \infty \) hay \({u_n} \to  - \infty \) khi \(n \to  + \infty \).

Lời giải chi tiết:

Xét dãy \(\left( {{u_n}} \right) = {n^3}\)

Với M là số dương bất kì, ta thấy \({u_n} > M \Leftrightarrow {n^3} > M \Leftrightarrow n > \sqrt[3]{M}.\)

Vậy với các số tự nhiên \(n > \sqrt[3]{M}\) thì \({u_n} > M.\) Do đó, \(\lim {n^3} =  + \infty  \Rightarrow \lim \left( { - {n^3}} \right) =  - \infty \)

LT - VD 8

Chứng tỏ rằng \(\lim \frac{{n - 1}}{{{n^2}}} = 0.\)

Phương pháp giải:

Sử dụng lý thuyết một số giới hạn cơ bản: \(\lim \frac{1}{n} = 0;\lim \frac{1}{{{n^k}}} = 0\) với k là số nguyên dương cho trước.

Lời giải chi tiết:

\(\lim \frac{{n - 1}}{{{n^2}}} = \lim \left( {\frac{1}{n} - \frac{1}{{{n^2}}}} \right) = \lim \frac{1}{n} - \lim \frac{1}{{{n^2}}} = 0\)

  • Bài 1 trang 64 SGK Toán 11 tập 1 - Cánh diều

    Cho hai dãy số \(\left( {{u_n}} \right),\left( {{v_n}} \right)\) với \({u_n} = 3 + \frac{1}{n};{v_n} = 5 - \frac{2}{{{n^2}}}.\) Tính các giới hạn sau: a) \(\lim {u_n},\lim {v_n}.\) b) \(\lim \left( {{u_n} + {v_n}} \right),\lim \left( {{u_n} - {v_n}} \right),\lim \left( {{u_n}.{v_n}} \right),\lim \frac{{{u_n}}}{{{v_n}}}.\)

  • Bài 2 trang 65 SGK Toán 11 tập 1 - Cánh Diều

    Tính các giới hạn sau: a) (lim frac{{5n + 1}}{{2n}};) b) (lim frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}};) c) (lim frac{{sqrt {{n^2} + 5n + 3} }}{{6n + 2}};) d) (lim left( {2 - frac{1}{{{3^n}}}} right);) e) (lim frac{{{3^n} + {2^n}}}{{{{4.3}^n}}};) g) (lim frac{{2 + frac{1}{n}}}{{{3^n}}}.)

  • Bài 3 trang 65 SGK Toán 11 tập 1 - Cánh Diều

    a) Tính tổng của cấp số nhân lùi vô hạn (left( {{u_n}} right),) với ({u_1} = frac{2}{3},q = - frac{1}{4}.) b) Biểu diễn số thập phân vô hạn tuần hoàn 1,(6) dưới dạng phân số.

  • Bài 4 trang 65 SGK Toán 11 tập 1 - Cánh Diều

    Từ hình vuông có độ dài cạnh bằng 1, người ta nối các trung điểm của cạnh hình vuông để tạo ra hình vuông mới như Hình 3. Tiếp tục quá trình này đến vô hạn. a) Tính diện tích Sn của hình vuông được tạo thành ở bước thứ n; b) Tính tổng diện tích của tất cả các hình vuông được tạo thành.

  • Bài 5 trang 65 SGK Toán 11 tập 1 - Cánh Diều

    Có 1 kg chất phóng xạ độc hại. Biết rằng, cứ sau một khoảng thời gian T= 24 000 năm thì một nửa số chất phóng xạ này bị phân rã thành chất khác không độc hại đối với sức khỏe của con người (T được gọi là chu kì bán rã). (Nguồn: Đại số và Giải tích 11, NXBGD Việt Nam, 2021) Gọi ({u_n}) là khối lượng chất phóng xạ còn lại sau chu kì thứ n. a) Tìm số hạng tổng quát ({u_n}) của dãy số (left( {{u_n}} right)). b) Chứng minh rằng (left( {{u_n}} right)) có giới hạn là 0. c) Từ kết qu

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close