Giải mục 5 trang 38 SGK Toán 11 tập 1 - Cánh DiềuQuan sát các giao điểm của đồ thị hàm số y = cotx và đường thẳng y = m (Hình 37)
Lựa chọn câu để xem lời giải nhanh hơn
HĐ 6 Quan sát các giao điểm của đồ thị hàm số y = cotx và đường thẳng y = -1 (Hình 37)
a) Từ hoành độ giao điểm của đồ thị hàm số y = cotx và đường thẳng y = m trên khoảng \(\left( {0;\pi } \right)\), hãy xác định tất cả các hoành độ giao điểm của hai đồ thị đó. b) Có nhận xét gì về nghiệm của phương trình cotx = -1? Phương pháp giải: Dựa vào phương trình lượng giác của sinx và cosx để làm bài: Lời giải chi tiết: a) Do hoành độ giao điểm nằm trên khoảng \(\left( {0;\pi } \right)\) nên: \(\cot x = m \Leftrightarrow \cot x = \cot \alpha \Leftrightarrow x = \alpha + k\pi \) b) Nhận xét: trên khoảng \(\left( {0;\pi } \right)\), với mọi \(m \in \mathbb{R}\) ta luôn có \(x = \alpha + k\pi \) LT - VD 8 a) Giải phương trình \(\cot x = 1\) b) Tìm góc lượng giác x sao cho \(\cot x = \cot \left( { - {{83}^ \circ }} \right)\) Phương pháp giải: Sử dụng công thức tổng quát để giải phương trình cot Lời giải chi tiết: a) \(\cot x = 1 \Leftrightarrow \cot x = \cot \frac{\pi }{4} \Leftrightarrow x = \frac{\pi }{4} + k\pi \) b) \(\cot x = \cot \left( { - {{83}^ \circ }} \right) \Leftrightarrow x = - {83^ \circ } + k{.180^ \circ }\)
|