Bài 5 trang 104 SGK Toán 11 tập 1 - Cánh Diều

Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi M, N lần lượt là trọng tâm của hai tam giác ABF và ABC. Chứng minh rằng đường thẳng MN song song với mặt phẳng (ACF).

Đề bài

Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi M, N lần lượt là trọng tâm của hai tam giác ABF và ABC. Chứng minh rằng đường thẳng MN song song với mặt phẳng (ACF).

Phương pháp giải - Xem chi tiết

Dùng định lí Thales đảo và tính chất đường trung bình tam giác.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Gọi I là trung điểm của AB.

M là trọng tâm tam giác ABF suy ra \(\frac{{IM}}{{IF}} = \frac{1}{3}\).

N là trọng tâm tam giác ABC suy ra \(\frac{{IN}}{{IC}} = \frac{1}{3}\).

Xét tam giác ICF có \(\frac{{IM}}{{IF}} = \frac{{IN}}{{IC}} = \frac{1}{3}\) suy ra MN//FC (định lí Thales đảo).

Mà FC thuộc mặt phẳng (AFC) suy ra MN//(AFC).

 

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

close