Bài 5 trang 48 SGK Toán 11 tập 1 - Cánh diềuCho dãy số dương \(\left( {{u_n}} \right)\). Chứng minh rằng dãy số \(\left( {{u_n}} \right)\) là dãy số tăng khi và chỉ khi \(\frac{{{u_{n + 1}}}}{{{u_n}}} > 1\) với mọi \(n \in {\mathbb{N}^*}\). GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho HocTot.XYZ và nhận về những phần quà hấp dẫn Đề bài Cho dãy số dương \(\left( {{u_n}} \right)\). Chứng minh rằng dãy số \(\left( {{u_n}} \right)\) là dãy số tăng khi và chỉ khi \(\frac{{{u_{n + 1}}}}{{{u_n}}} > 1\) với mọi \(n \in {\mathbb{N}^*}\). Phương pháp giải - Xem chi tiết Dựa vào kiến thức đã học để chứng minh Lời giải chi tiết Ta có: \(\begin{array}{l}\frac{{{u_{n + 1}}}}{{{u_n}}} > 1\,\,\,\forall n \in {\mathbb{N}^*}\\ \Leftrightarrow {u_{n + 1}} > {u_n}\,\,\,\forall n \in {\mathbb{N}^*}\end{array}\) => Luôn đúng
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
|