Bài 8 trang 80 SGK Toán 11 tập 1 - Cánh Diều

Một thấu kính hội tụ có tiêu cự là \(f\). Gọi \(d\) và \(d'\) lần lượt là khoảng cách từ một vật thật AB và từ ảnh \(A'B'\) của nó tới quang tâm \(O\) của thấu kính như Hình 19. Công thức thấu kính là \(\frac{1}{d} + \frac{1}{{d'}} = \frac{1}{f}\).

Đề bài

Một thấu kính hội tụ có tiêu cự là \(f\). Gọi \(d\) và \(d'\)  lần lượt là khoảng cách từ một vật thật AB và từ ảnh \(A'B'\) của nó tới quang tâm \(O\) của thấu kính như Hình 19. Công thức thấu kính là \(\frac{1}{d} + \frac{1}{{d'}} = \frac{1}{f}\).

a) Tìm biểu thức xác định hàm số \(d' = \varphi (d)\).     

b) Tìm \(\mathop {\lim }\limits_{d \to {f^ + }} \varphi (d),\mathop {\lim }\limits_{d \to {f^ - }} \varphi (d)\) và \(\mathop {\lim }\limits_{d \to f} \varphi (d)\). Giải thích ý nghĩa của các kết quả tìm được.

Phương pháp giải - Xem chi tiết

Sử dụng công thức \(\frac{1}{d} + \frac{1}{{d'}} = \frac{1}{f}\)

Lời giải chi tiết

a) Ta có \(\frac{1}{d} + \frac{1}{{d'}} = \frac{1}{f} \Leftrightarrow \frac{1}{{d'}} = \frac{1}{f} - \frac{1}{d} = \frac{{d - f}}{{df}} \Leftrightarrow d' = \frac{{df}}{{d - f}}\)

b)

Ta có: \(\left\{ \begin{array}{l}df > 0\\d - f > 0,d \to {f^ + }\end{array} \right.\)

\(\begin{array}{l}\mathop {\lim }\limits_{d \to {f^ + }} \varphi (d) = \mathop {\lim }\limits_{d \to {f^ + }} \frac{{df}}{{d - f}} =  + \infty \end{array}\)

Ta có: \(\left\{ \begin{array}{l}df > 0\\d - f < 0,d \to {f^ - }\end{array} \right.\)

Do đó, \(\begin{array}{l}\mathop {\lim }\limits_{d \to {f^ - }} \varphi (d) = \mathop {\lim }\limits_{d \to {f^ - }} \frac{{df}}{{d - f}} =  - \infty \end{array}\)

Vì \(\begin{array}{l}\mathop {\lim }\limits_{d \to {f^ + }} \varphi (d)\ne \mathop {\lim }\limits_{d \to {f^ - }} \varphi (d)\end{array}\)

Vậy nên không tồn tại \(\begin{array}{l}\mathop {\lim }\limits_{d \to f} \varphi (d)  \end{array}\)

Giải thích ý nghĩa của các kết quả tìm được: Khi khoảng cách của vật tới thấu kính mà gần với tiêu cự thì khoảng cách ảnh của vật đến thấu kính ra xa vô tận nên lúc đó bằng mắt thường mình không nhìn thấy.

  • Bài 7 trang 80 SGK Toán 11 tập 1 - Cánh Diều

    Cho một tam giác đều ABC cạnh \(a\). Tam giác \({A_1}{B_1}{C_1}\) có các đỉnh là trung điểm các cạnh của tam giác ABC, tam giác \({A_2}{B_2}{C_2}\) có các đỉnh là trung điểm các cạnh của tam giác \({A_1}{B_1}{C_1}, \ldots \), tam giác \({A_{n + 1}}{B_{n + 1}}{C_{n + 1}}\) có các đỉnh là trung điểm các cạnh của tam giác \({A_n}{B_n}{C_n}, \ldots \)

  • Bài 6 trang 80 SGK Toán 11 tập 1 - Cánh Diều

    Từ độ cao \(55,8\;{\rm{m}}\) của tháp nghiêng Pisa nước Ý, người ta thả một quả bóng cao su chạm xuống đất (Hình 18).

  • Bài 5 trang 79 SGK Toán 11 tập 1 - Cánh Diều

    Cho hàm số \(f(x) = \left\{ {\begin{array}{*{20}{l}}{2x + a}&{{\rm{ }}x < 2}\\4&{{\rm{ }}x = 2}\\{ - 3x + b}&{{\rm{ }}\,x > 2}\end{array}} \right.\)

  • Bài 4 trang 79 SGK Toán 11 tập 1 - Cánh Diều

    Tính các giới hạn sau: a) (mathop {lim }limits_{x to - infty } frac{{6x + 8}}{{5x - 2}}); b) (mathop {lim }limits_{x to + infty } frac{{6x + 8}}{{5x - 2}});

  • Bài 3 trang 79 SGK Toán 11 tập 1 - Cánh Diều

    Tính các giới hạn sau: a) \(\mathop {\lim }\limits_{x \to - 3} \left( {4{x^2} - 5x + 6} \right)\); b) \(\mathop {\lim }\limits_{x \to 2} \frac{{2{x^2} - 5x + 2}}{{x - 2}}\); c) \(\mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x - 2}}{{{x^2} - 16}}\).

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close