Bài 9.31 trang 98 SGK Toán 11 tập 2 - Kết nối tri thứcĐồ thị của hàm số (y = frac{a}{x}) (a là hằng số dương) Đề bài Đồ thị của hàm số \(y = \frac{a}{x}\) (a là hằng số dương) là một đường hypebol. Chứng minh rằng tiếp tuyến tại một điểm bất kì của đường hypebol đó tạo với các trục toạ độ một tam giác có diện tích không đổi. Video hướng dẫn giải Phương pháp giải - Xem chi tiết Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm \({x_0}\) thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(P\left( {{x_0};{y_0}} \right)\) là \(y - {y_0} = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right),\) trong đó \({y_0} = f\left( {{x_0}} \right)\) Lời giải chi tiết Ta có \(y' = \frac{{ - a}}{{{x^2}}}\) Phương trình tiếp tuyến của hypebol tại điểm có hoành độ \({x_0}\) là \(y - \frac{a}{{{x_0}}} = \frac{{ - a}}{{x_0^2}}\left( {x - {x_0}} \right)\) hay \(y = \frac{{ - a}}{{x_0^2}}x + \frac{{2a}}{{{x_0}}}\) Gọi phương trình tiếp tuyến cắt hai trục tọa độ lần lượt tại A, B \( \Rightarrow A\left( {0;\frac{{2a}}{{{x_0}}}} \right),B\left( {2{x_0};0} \right)\) Do đó diện tích tam OAB bằng \(\frac{1}{2}.OA.OB = \frac{1}{2}\left| {\frac{{2a}}{{{x_0}}}.2{x_0}} \right| = 2a\) Vậy tiếp tuyến tại một điểm bất kì của đường hypebol đó tạo với các trục toạ độ một tam giác có diện tích không đổi.
|