Nội dung từ Loigiaihay.Com
Rút gọn biểu thức:
a. \(A = \sqrt {40_{}^2 - 24_{}^2} \);
b. \(B = \left( {\sqrt {12} + 2\sqrt 3 - \sqrt {27} } \right).\sqrt 3 \);
c. \(C = \frac{{\sqrt {63_{}^3 + 1} }}{{\sqrt {63_{}^2 - 62} }}\);
d. \(D = \sqrt {60} - 5\sqrt {\frac{3}{5}} - 3\sqrt {\frac{5}{3}} \).
Áp dụng các kiến thức về căn bậc hai của một thương, căn bâc hai của một tích, đưa thừa số vào trong căn bậc hai và đưa thừa số ra ngoài căn bậc hai để giải bài toán.
a. \(A = \sqrt {40_{}^2 - 24_{}^2} \)
\(\begin{array}{l} = \sqrt {\left( {40 - 24} \right)\left( {40 + 24} \right)} \\ = \sqrt {16.64} = \sqrt {16} .\sqrt {64} \\ = 4.8 = 32\end{array}\)
b. \(B = \left( {\sqrt {12} + 2\sqrt 3 - \sqrt {27} } \right).\sqrt 3 \)
\(\begin{array}{l} = \left( {\sqrt {12} + \sqrt {12} - \sqrt {27} } \right).\sqrt 3 \\ = \left( {2\sqrt {12} - \sqrt {27} } \right).\sqrt 3 \\ = 2\sqrt {36} - \sqrt {81} \\ = 12 - 9\\ = 3\end{array}\)
c. \(C = \frac{{\sqrt {{{63}^3} + 1} }}{{\sqrt {{{63}^2} - 62} }}\)
\(\begin{array}{l} = \frac{{\sqrt {\left( {63 + 1} \right)\left( {63_{}^2 - 63 + 1} \right)} }}{{\sqrt {63_{}^2 - 62} }}\\ = \frac{{\sqrt {64.\left( {63_{}^2 - 62} \right)} }}{{\sqrt {63_{}^2 - 62} }}\\ = \frac{{\sqrt {64} .\sqrt {63_{}^2 - 62} }}{{\sqrt {63_{}^2 - 62} }}\\ = \sqrt {64} \\ = 8\end{array}\)
d. \(D = \sqrt {60} - 5\sqrt {\frac{3}{5}} - 3\sqrt {\frac{5}{3}} \)
\(\begin{array}{l} = \sqrt {4.15} - 5\frac{{\sqrt 3 }}{{\sqrt 5 }} - 3\frac{{\sqrt 5 }}{{\sqrt 3 }}\\ = \frac{{2\sqrt {15} .\sqrt {15} }}{{\sqrt {15} }} - \frac{{5\sqrt 3 .\sqrt 3 }}{{\sqrt {15} }} - \frac{{3\sqrt 5 .\sqrt 5 }}{{\sqrt {15} }}\\ = \frac{{30}}{{\sqrt {15} }} - \frac{{15}}{{\sqrt {15} }} - \frac{{15}}{{\sqrt {15} }}\\ = \frac{0}{{\sqrt {15} }} = 0\end{array}\)
Các bài tập cùng chuyên đề
Bài 1 :
Rút gọn biểu thức $A = \sqrt {36{a^2}} + 3a$ với $a > 0$.
$ - 9a$
$ - 3a$
$ 3a$
$ 9a$
Bài 2 :
Rút gọn biểu thức
$\sqrt {{a^2} + 8a + 16} + \sqrt {{a^2} - 8a + 16} $ với $ - 4 \le a \le 4$ ta được
$2a$
$8$
$ - 8$
$ - 2a$
Bài 3 :
Nghiệm của phương trình \(\sqrt {{x^2} + 6x + 9} = 4 - x\) là
$x = 2$
$x = \dfrac{1}{4}$
$x = \dfrac{1}{2}$
$x = 3$
Bài 4 :
Rút gọn biểu thức $\dfrac{{\sqrt {{x^2} - 6x + 9} }}{{x - 3}}$ với $x < 3$ ta được
$ - 1$
$ 1$
$ 2$
$ - 2$
Bài 5 :
Tìm giá trị nhỏ nhất của biểu thức \(A = \sqrt {{m^2} + 2m + 1} + \sqrt {{m^2} - 8m + 16} \).
$2$
$9$
$5$
$10$
Bài 6 :
Rút gọn biểu thức \(A = \sqrt {144{a^2}} - 9a\) với \(a > 0\).
\( - 9a\)
\( - 3a\)
\(3a\)
\(9a\)
Bài 7 :
Rút gọn biểu thức \(\sqrt {4{a^2} + 12a + 9} + \sqrt {4{a^2} - 12a + 9} \) với \( - \dfrac{3}{2} \le a \le \dfrac{3}{2}\) ta được:
\( - 4a\)
\(4a\)
\( - 6\)
\(6\)
Bài 8 :
Số nghiệm của phương trình \(\sqrt {4{x^2} + 4x + 1} = 3 - 4x\) là:
\(0\)
\(4\)
\(1\)
\(2\)
Bài 9 :
Rút gọn biểu thức \(\dfrac{{\sqrt {{x^2} + 10x + 25} }}{{ - 5 - x}}\) với \(x < - 5\) ta được:
\( - 1\)
\(1\)
\(2\)
\(-2\)
Bài 10 :
Tìm giá trị nhỏ nhất của biểu thức \(B = \sqrt {4{a^2} - 4a + 1} + \sqrt {4{a^2} - 12a + 9} \).
\(2\)
\(1\)
\(4\)
\(10\)
Bài 11 :
Rút gọn \(A = \dfrac{{\sqrt {x - 1 - 2\sqrt {x - 2} } }}{{\sqrt {x - 2} - 1}}\) với \(x > 3\)
Bài 12 :
Rút gọn biểu thức sau \(\sqrt {{{\left( {a - b} \right)}^2}} - 3\sqrt {{a^2}} + 2\sqrt {{b^2}} \) với \(a < 0 < b\)
Bài 13 :
a) Rút gọn biểu thức \(x\sqrt {{x^6}} \left( {x < 0} \right).\)
b) Rút gọn và tính giá trị của biểu thức \(x + \sqrt {4{x^2} - 4x + 1} \) tại \(x = - 2,5.\)
Bài 14 :
Rút gọn các biểu thức sau:
a) \(\sqrt {{{\left( {2 - \sqrt 5 } \right)}^2}} ;\)
b) \(3\sqrt {{x^2}} - x + 1\left( {x < 0} \right);\)
c) \(\sqrt {{x^2} - 4x + 4} \left( {x < 2} \right).\)
Bài 15 :
Tìm x, biết:
a) x2 = 121
b) 4x2 = 9
c) x2 = 10
Bài 16 :
Hoàn thành bảng sau vào vở.
Từ đó, nhận xét gì về căn bậc hai số học của bình phương của một số?
Bài 17 :
Tính
a) \(\sqrt {{{\left( { - 0,4} \right)}^2}} \)
b) \( - \sqrt {{{\left( { - \frac{4}{9}} \right)}^2}} \)
c) \( - 2\sqrt {{3^2}} + {\left( { - \sqrt 6 } \right)^2}\)
Bài 18 :
Rút gọn các biểu thức sau:
a) \(\sqrt {{{\left( {2 - \sqrt 5 } \right)}^2}} \)
b) \(\sqrt {{a^2}} + \sqrt {{{( - 3a)}^2}} \) với a > 0.
Bài 19 :
Tìm chỗ sai trong phép chứng minh “voi con nặng bằng voi mẹ” sau đây:
\(\begin{array}{l}{M^2} - 2Mm + {m^2} = {m^2} - 2mM + {M^2}\\{(M - m)^2} = {(m - M)^2}\\\sqrt {{{(M - m)}^2}} = \sqrt {{{(m - M)}^2}} \\M - m = m - M\\2M = 2m\\M = m(!)\end{array}\)
Bài 20 :
Biết rằng 1 < a < 5, rút gọn biểu thức
A = \(\sqrt {{{\left( {a - 1} \right)}^2}} + \sqrt {{{\left( {a - 5} \right)}^2}} \).
Bài 21 :
Tìm số thích hợp cho “?”:
a. \(\sqrt {7_{}^2} = ?\);
b. \(\sqrt {\left( { - 9} \right)_{}^2} = ?\);
c. \(\sqrt {a_{}^2} = ?\) với a là một số cho trước.
Bài 22 :
Áp dụng quy tắc về căn thức bậc hai của một bình phương, hãy rút gọn biểu thức:
a. \(\sqrt {x_{}^2 + 6x + 9} \) với \(x < - 3\);
b. \(\sqrt {y_{}^4 + 2y_{}^2 + 1} \).
Bài 23 :
Áp dụng quy tắc về căn thức bậc hai của một bình phương, hãy rút gọn biểu thức:
a. \(\sqrt {\left( {5 - x} \right)_{}^2} \) với \(x \ge 5\);
b. \(\sqrt {\left( {x - 3} \right)_{}^4} \);
c. \(\sqrt {\left( {y + 1} \right)_{}^6} \) với \(y < - 1\).
Bài 24 :
Hãy chép lại và hoàn thành Bảng 3.1. Em có nhận xét gì về giá trị của \(\sqrt {{{\left( {2x - 1} \right)}^2}} \) và \(\left| {2x - 1} \right|\)?
Bài 25 :
Rút gọn:
a) \(\sqrt {{x^8}} \);
b) \(2\sqrt {{{\left( { - y + 5} \right)}^2}} \) với \(y \ge 5\);
c) \( - 3\sqrt {{z^{10}}} \) với \(z < 0\).
Bài 26 :
Rút gọn rồi tính giá trị biểu thức \(\sqrt {25{{\left( {4{x^2} - 4x + 1} \right)}^2}} \) tại \(x = \sqrt 3 \).
Bài 27 :
Áp dụng quy tắc về căn thức bậc hai của một bình phương, hãy rút gọn biểu thức:
a) \(\sqrt {25 - 10 + {x^2}} \) với \(x \le 5.\)
b) \(\sqrt {{{\left( {9 + 12x + 4{x^2}} \right)}^2}} \)
c) \(\sqrt {{{\left( {3x + 1} \right)}^6}} \) với \(x \ge \frac{{ - 1}}{3}\)
d) \(\sqrt {\frac{{49{x^2}{{\left( {x + 5} \right)}^2}}}{{16}}} \) với \(x \ge 0\)
Bài 28 :
Tìm x, biết:
a) \(\frac{1}{2}\sqrt x - \frac{3}{2}\sqrt {9x} + 24\sqrt {\frac{x}{{64}}} = - 17\) với \(x \ge 0\)
b) \(\sqrt {\frac{x}{5}} = 4\) với \(x \ge 0\)
c) \(\sqrt {25{x^2}} = 10\)
d) \(\sqrt {{{\left( {2x - 1} \right)}^2}} = 3\)
e) \(2 - \sqrt[3]{{5 - x}} = 0\)
Bài 29 :
Rút gọn biểu thức \(\sqrt {{{\left( { - a} \right)}^2}} - \sqrt {9{a^2}} \) với a < 0, ta có kết quả
A. – 4a
B. 2a
C. 4a
D. – 2a
Bài 30 :
Biểu thức \(\sqrt {{{\left( {3 - 2x} \right)}^2}} \) bằng
\(3 - 2x\).
\(2x - 3\).
\(\left| {2x - 3} \right|\).
\(3x - 2\) và \(2 - 3x\).