hoctot.xyz

  • Lớp 12 Học ngay
  • Lớp 11 Học ngay
  • Lớp 10 Học ngay
  • Lớp 9 Học ngay
  • Lớp 8 Học ngay
  • Lớp 7 Học ngay
  • Lớp 6 Học ngay
  • Lớp 5 Học ngay
  • Lớp 4 Học ngay
  • Lớp 3 Học ngay
  • Lớp 2 Học ngay
  • Lớp 1 Học ngay
SBT Toán 11 - giải SBT Toán 11 - Chân trời sáng tạo | Bài tập cuối chương 1 - SBT Toán 11 CTST
Bình chọn:
4.9 trên 7 phiếu
  • Câu hỏi trắc nghiệm trang 32, 33 sách bài tập toán 11 - Chân trời sáng tạo tập 1

    Trên đường tròn lượng giác, góc lượng giác \(\frac{{13\pi }}{7}\) có cùng điểm biểu diễn với góc lượng giác nào sau đây? A. \(\frac{{6\pi }}{7}\). B. \(\frac{{20\pi }}{7}\).

    Xem chi tiết
  • Bài 1 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1

    Cho \(\sin \alpha = \frac{3}{4}\) với \(\frac{\pi }{2} < \alpha < \pi \). Tính giá trị của các biểu thức sau: a) \(\sin 2\alpha \); b) \(\cos \left( {\alpha + \frac{\pi }{3}} \right)\);

    Xem chi tiết
  • Quảng cáo

    Lộ trình SUN 2026
  • Bài 2 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1

    Chứng minh rằng các hàm số dưới đây là hàm số tuần hoàn và xét tính chẵn, lẻ của mỗi hàm số đó. a) \(y = 3\sin x + 2\tan \frac{x}{3}\); b) \(y = \cos x\sin \frac{{\pi - x}}{2}\).

    Xem chi tiết
  • Bài 3 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1

    Chứng minh các đẳng thức lượng giác sau: a) \({\sin ^2}\left( {x + \frac{\pi }{8}} \right) - {\sin ^2}\left( {x - \frac{\pi }{8}} \right) = \frac{{\sqrt 2 }}{2}\sin 2x\); b) \({\sin ^2}y + 2\cos x\cos y\cos \left( {x - y} \right) = {\cos ^2}x + {\cos ^2}\left( {x - y} \right)\).

    Xem chi tiết
  • Bài 4 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1

    Giải các phương trình lượng giác sau: a) \(\cos \left( {2x - \frac{\pi }{3}} \right) + \sin x \) \( = 0\); b) \({\cos ^2}\left( {x + \frac{\pi }{4}} \right) \) \( = \frac{{2 + \sqrt 3 }}{4}\); c) \(\cos \left( {3x + \frac{\pi }{6}} \right) + 2{\sin ^2}x \) \( = 1\)

    Xem chi tiết
  • Bài 5 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1

    Vận tốc \({v_1}\left( {cm/s} \right)\) của con lắc đơn thứ nhất và vận tốc \({v_2}\left( {cm/s} \right)\) của con lắc đơn thứ hai theo thời gian t (giây) được cho bởi các công thức: \({v_1}\left( t \right) \) \( = - 4\cos \left( {\frac{{2t}}{3} + \frac{\pi }{4}} \right)\) và \({v_2}\left( t \right) \) \( = 2\sin \left( {2t + \frac{\pi }{6}} \right)\) Xác định các thời điểm t mà tại đó: a) Vận tốc của con lắc đơn thứ nhất bằng 2cm/s. b) Vận tốc của con lắc đơn thứ nhất gấp hai lần vận tốc củ

    Xem chi tiết

  • Trang chủ
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Lớp 2
  • Lớp 1

Tiện ích | Blog

Nội dung từ Loigiaihay.Com