Đề bài
Từ định nghĩa của sinα, cosα. Hãy chứng minh hằng đẳng thức đầu tiên, từ đó suy ra các hằng đẳng thức còn lại.
Video hướng dẫn giải
Lời giải chi tiết
\(\sin \alpha = \overline {OK} ,\cos \alpha = \overline {OH} \)
Do tam giác OMK vuông tại K nên:
sin2 α + cos2 α = OK2 + OH2
= OK2 + MK2 = OM2 = 1.
Vậy sin2 α + cos2 α = 1.
\(\eqalign{
& 1 + {\tan ^2}\alpha = 1 + {{{{\sin }^2}\alpha } \over {{{\cos }^2}\alpha }}\cr & = {{{{\sin }^2}\alpha + {{\cos }^2}\alpha } \over {{{\cos }^2}\alpha }} = {1 \over {{{\cos }^2}\alpha }} \cr
& 1 + {\cot ^2}\alpha = 1 + {{{{\cos }^2}\alpha } \over {{{\sin }^2}\alpha }} \cr &= {{{{\sin }^2}\alpha + {{\cos }^2}\alpha } \over {{{\sin }^2}\alpha }} = {1 \over {{{\sin }^2}\alpha }} \cr
& \tan \alpha .\cot \alpha = {{\sin \alpha } \over {\cos \alpha }}.{{\cos \alpha } \over {\sin \alpha }} = 1 \cr} \)
HocTot.XYZ