Giải bài 1.15 trang 15 sách bài tập toán 12 - Kết nối tri thứcTìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số sau: (fleft( x right) = left{ begin{array}{l}2x - 1,{rm{ }}0 le x le 2{x^2} - 5x + 9,{rm{ }}2 < x le 3.end{array} right.) Đề bài Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số sau: \(f\left( x \right) = \left\{ \begin{array}{l}2x - 1,{\rm{ }}0 \le x \le 2\\{x^2} - 5x + 9,{\rm{ }}2 < x \le 3.\end{array} \right.\) Phương pháp giải - Xem chi tiết Ta cần tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {0;3} \right]\) nhưng \(f\left( x \right)\) là hàm có hai công thức trên \(f\left( x \right)\) nên sẽ tách thành hai trường hợp là \(x \in \left[ {0;2} \right]\) và \(x \in \left( {2;\left. 3 \right]} \right.\). Với mỗi trường hợp ta lần lượt thực hiện các bước sau: - Tìm các điểm thuộc đoạn/nửa khoảng đang xét mà tại đó giá trị đạo hàm bằng không hoặc không tồn tại. - Tính giá trị của hàm số tại các điểm vừa tìm được ở bước trước và tại biên của đoạn đang xét (nếu có). Sau khi thực hiện các bước trên với cả hai trường hợp, tìm số lớn nhất, nhỏ nhất trong các số vừa tính ta thu được giá trị lớn nhất, nhỏ nhất của hàm số trên toàn đoạn \(\left[ {0;3} \right]\). Lời giải chi tiết + Xét \(x \in \left[ {0;2} \right]\) ta có \(f\left( x \right) = 2x - 1\). Ta có \(f'\left( x \right) = 2 \ne 0{\rm{ }}\forall x \in \left( {0;2} \right)\). Mặt khác \(f\left( 0 \right) = 2 \cdot 0 - 1 = - 1;{\rm{ f}}\left( 2 \right) = 2 \cdot 2 - 1 = 3.\) + Xét \(x \in \left( {2;\left. 3 \right]} \right.\) ta có \(f\left( x \right) = {x^2} - 5x + 9\). Khi đó \(f'\left( x \right) = 0 \Leftrightarrow 2x - 5 = 0 \Leftrightarrow x = \frac{5}{2} \in \left( {2;3} \right)\). Ta có \(f\left( {\frac{5}{2}} \right) = {\left( {\frac{5}{2}} \right)^2} - 5 \cdot \frac{5}{2} + 9 = \frac{{11}}{4};{\rm{ f}}\left( 3 \right) = {3^2} - 5 \cdot 3 + 9 = 3.\) Vậy \(\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( x \right) = f\left( 0 \right) = - 1\); \(\mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = f\left( 2 \right) = f\left( 3 \right) = 3\).
|