Giải bài 2 trang 86 SGK Toán 10 tập 2 – Cánh diều

Tính số đo góc giữa hai đường thẳng

Đề bài

Tính số đo góc giữa hai đường thẳng \({d_1}:2x-y + 5 = 0\) và\({d_2}:x - 3y + 3 = 0\).

Phương pháp giải - Xem chi tiết

Trong mặt phẳng toạ độ, cho hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) có vectơ chỉ phương lần lượt là  \(\overrightarrow {{n_1}}  = {\rm{ }}\left( {{a_1};{\rm{ }}{b_1}} \right),{\rm{ }}\overrightarrow {{n_2}} {\rm{ }} = {\rm{ }}\left( {{a_2};{b_2}} \right)\) ta có:

\(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \left| {\cos \left( {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2}} \right|}}{{\sqrt {a_1^2 + b_1^2} .\sqrt {a_2^2 + b_2^2} }}\).

Lời giải chi tiết

Vecto pháp tuyến của đường thẳng \({d_1}\) là: \(\overrightarrow {{n_1}}  = \left( {2; - 1} \right)\).

Vecto pháp tuyến của đường thẳng \({d_2}\) là: \(\overrightarrow {{n_2}}  = \left( {1; - 3} \right)\).

Ta có: \(\cos \left( {{d_1},{d_2}} \right) = \left| {\cos \left( {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right)} \right| \)

\(= \frac{{\left| {2.1 + \left( { - 1} \right).\left( { - 3} \right)} \right|}}{{\sqrt {{{\left( 2 \right)}^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{\sqrt 2 }}{2}\).

Vậy \(\left( {{d_1},{d_2}} \right) = {45^o}\).

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!

close