Giải bài 29 trang 56 SBT toán 10 - Cánh diềuTập nghiệm của bất phương trình \( - {x^2} + 3x + 18 \ge 0\) là: Đề bài Tập nghiệm của bất phương trình \( - {x^2} + 3x + 18 \ge 0\) là: A. \(\left[ { - 3;6} \right]\) B. \(\left( { - 3;6} \right)\) C. \(x \in \left( { - \infty ; - 3} \right) \cup \left( {6; + \infty } \right)\) D. \(x \in \left( { - \infty ; - 3} \right] \cup \left[ {6; + \infty } \right)\) Phương pháp giải - Xem chi tiết Sử dụng định lý về dấu của tam thức bậc hai Bước 1: Xác định dấu của hệ số \(a\) và tìm nghiệm của \(f\left( x \right)\) (nếu có) Bước 2: Sử dụng định lý về dấu của tam thức bậc hai để tìm tập hợp các giá trị của của x sao cho \(f\left( x \right)\) mang dấu thỏa mãn bất phương trình Lời giải chi tiết Tam thức bậc hai \( - {x^2} + 3x + 18\) có hai nghiệm \({x_1} = - 3;{x_2} = 6\) và có hệ số \(a = - 1 < 0\) Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của \(x\) sao cho tam thức \( - {x^2} + 3x + 18 \ge 0\) mang dấu “+” là \(\left[ { - 3;6} \right]\) Chọn A.
|