Giải bài 46 trang 78 sách bài tập toán 8 – Cánh diềuBác An cần đo khoảng cách \(AC\), với \(A,C\) nằm ở hai bên bờ của một hồ nướ (Hình 44a). Bác An đã tiến hành đo như sau: GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho HocTot.XYZ và nhận về những phần quà hấp dẫn Đề bài Bác An cần đo khoảng cách \(AC\), với \(A,C\) nằm ở hai bên bờ của một hồ nướ (Hình 44a). Bác An đã tiến hành đo như sau: - Chọn điểm \(B\) trên bờ (có điểm \(C\)) sao cho \(BC = 20\) (m). - Dùng thước đo góc, đo được các góc \(\widehat {ABC} = 32^\circ ,\widehat {ACB} = 77^\circ \). Chứng minh rằng: Nếu thực hiện vẽ trên giấy một tam giác \(DEF\) sao cho \(EF = 10\) (cm), \(\widehat {DEF} = 32^\circ ,\widehat {DFE} = 77^\circ \) (Hình 44b); Đo độ dài đoạn \(DF\) và giả sử \(DF = a\) (cm) thì độ dài \(AC\) mà bác An cần đo là \(2a\) (m). Phương pháp giải - Xem chi tiết Áp dụng trường hợp đồng dạng thứ ba: góc – góc Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng. Lời giải chi tiết Ta có \(\Delta ABC\backsim \Delta DEF\) \( = > \frac{{BC}}{{EF}} = \frac{{AC}}{{DF}}\) hay \(\frac{{2000}}{{10}} = \frac{{AC}}{a}\) Do đó \(AC = 200a\) (cm) \( = 2a\) (m).
>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
|