Giải Bài 54 trang 85 sách bài tập toán 7 - Cánh diều

Từ một điểm A nằm ngoài đường thẳng d, vẽ đường vuông góc AH và các đường xiên AB, AC tùy ý (Hình 40).

Đề bài

Từ một điểm A nằm ngoài đường thẳng d, vẽ đường vuông góc AH và các đường xiên AB, AC tùy ý (Hình 40).

Phương pháp giải - Xem chi tiết

- Sử dụng đường vuông góc và đường xiên để so sánh độ dài AH và AB, AH và AC.

-  Nếu AB = AC thì chứng minh \(\Delta ABH = \Delta ACH\) suy ra BH = CH.

- Nếu DH = CH thì chứng minh \(\Delta ABH = \Delta ACH\) suy ra AB = AC.

Lời giải chi tiết

a) Ta có AH và AB lần lượt là đường vuông góc và đường xiên kẻ từ điểm A đến đường thẳng d.

Suy ra AH < AB.

Tương tự, AH và AC lần lượt là đường vuông góc và đường xiên kẻ từ điểm A đến đường thẳng d.

Suy ra AH < AC.

Vậy AH < AB và AH < AC.

b) • Nếu AB = AC.

Xét ∆AHB và ∆AHC có:

\(\widehat {AHB} = \widehat {AHC}\left( { = 90^\circ } \right)\)

AB = AC (giả thiết),

AH là cạnh chung

Do đó ∆ABH = ∆ACH (cạnh huyền – cạnh góc vuông).

Suy ra BH = CH (hai cạnh tương ứng).

• Nếu BH = CH

Xét ∆AHB và ∆AHC có:

\(\widehat {AHB} = \widehat {AHC}\left( { = 90^\circ } \right)\)

BH = CH (giả thiết),

AH là cạnh chung

Do đó ∆ABH = ∆ACH (hai cạnh góc vuông).

Suy ra AB = AC (hai cạnh tương ứng).

Vậy nếu AB = AC thì HB = HC; ngược lại, nếu HB = HC thì AB = AC.

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close