Giải bài 5.42 trang 89 sách bài tập toán 11 - Kết nối tri thức với cuộc sốngTìm giới hạn của dãy số \(({u_n})\) với \({u_n} = \frac{{n\sqrt {1 + 2 + ... + n} }}{{2{n^2} + 3}}\). Đề bài Tìm giới hạn của dãy số \(({u_n})\) với \({u_n} = \frac{{n\sqrt {1 + 2 + ... + n} }}{{2{n^2} + 3}}\). Phương pháp giải - Xem chi tiết Sử dụng công thức tính tổng từ 1 đến n: \(1 + 2 + .. + n = \frac{{n(n + 1)}}{2}\). Rồi dùng các quy tắc tính giới hạn dãy số để tìm ra kết quả. Lời giải chi tiết \({u_n} = \frac{{n\sqrt {1 + 2 + ... + n} }}{{2{n^2} + 3}} = \frac{{n\sqrt {n\,(n + 1)} }}{{\sqrt 2 \left( {2{n^2} + 3} \right)}}\). Từ đó, ta có \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = \frac{1}{{2\sqrt 2 }}\).
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
|