Giải bài 6.14 trang 12 SGK Toán 8 tập 2 - Kết nối tri thứcCho hai phân thức: Đề bài Cho hai phân thức: \(\frac{{9{{\rm{x}}^2} + 3{\rm{x}} + 1}}{{27{{\rm{x}}^3} - 1}}\) và \(\frac{{{x^2} - 4{\rm{x}}}}{{16 - {x^2}}}\) a) Rút gọn hai phân thức đã cho b) Quy đồng mẫu thức hai phân thức nhận được ở câu a) Video hướng dẫn giải Phương pháp giải - Xem chi tiết a) Áp dụng quy tắc rút gọn phân thức b) - Tìm MTC - Tìm nhân tử phụ của mỗi mẫu thức - Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ Lời giải chi tiết a) Ta có: \(\frac{{9{{\rm{x}}^2} + 3{\rm{x}} + 1}}{{27{{\rm{x}}^3} - 1}} = \frac{{9{{\rm{x}}^2} + 3{\rm{x}} + 1}}{{\left( {3{\rm{x}} - 1} \right)\left( {9{{\rm{x}}^2} + 3{\rm{x}} + 1} \right)}} = \frac{1}{{3{\rm{x}} - 1}}\) \(\frac{{{x^2} - 4{\rm{x}}}}{{16 - {x^2}}} = \frac{{x\left( {x - 4} \right)}}{{\left( {4 - x} \right)\left( {4 + x} \right)}} = \frac{{ - x\left( {4 - x} \right)}}{{\left( {4 - x} \right)\left( {4 + x} \right)}} = \frac{{ - x}}{{4 + x}}\) b) Mẫu thức chung của hai phân thức nhân được ở câu a là: \(\left( {3{\rm{x}} - 1} \right)\left( {4 + x} \right)\) Nhân tử phụ của \(\frac{1}{{3{\rm{x}} - 1}}\) là: \(4 + x\) Nhân tử phụ của \(\frac{{ - x}}{{4 + x}}\) là : \(3{\rm{x}} - 1\) Khi đó: \(\frac{1}{{3{\rm{x}} - 1}} = \frac{{4 + x}}{{\left( {3{\rm{x}} - 1} \right)\left( {4 + x} \right)}}\) \(\frac{{ - x}}{{4 + x}} = \frac{{ - x\left( {3{\rm{x}} - 1} \right)}}{{\left( {4 + x} \right)\left( {3{\rm{x}} - 1} \right)}}\)
|