Giải bài 6.25 trang 17 sách bài tập toán 9 - Kết nối tri thức tập 2

Một bức ảnh hình chữ nhật có chiều rộng 8cm và chiều dài 12cm. Bức ảnh được phóng to bằng cách tăng chiều dài và chiều rộng thêm một đoạn bằng nhau để tăng gấp đôi diện tích của bức ảnh. Tìm kích thước của bức ảnh mới.

Đề bài

Một bức ảnh hình chữ nhật có chiều rộng 8cm và chiều dài 12cm. Bức ảnh được phóng to bằng cách tăng chiều dài và chiều rộng thêm một đoạn bằng nhau để tăng gấp đôi diện tích của bức ảnh. Tìm kích thước của bức ảnh mới.

Phương pháp giải - Xem chi tiết

Các bước giải một bài toán bằng cách lập phương trình:

Bước 1. Lập phương trình:

- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.

- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.

- Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2. Giải phương trình.

Bước 3. Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.

Lời giải chi tiết

Gọi độ dài của đoạn thẳng tăng thêm ở cả chiều dài và chiều rộng là x (cm). Điều kiện: \(x > 0\).

Diện tích của bức ảnh ban đầu là: \(12.8 = 96\left( {c{m^2}} \right)\).

Chiều dài của bức ảnh sau khi phóng to là \(x + 12\left( {cm} \right)\).

Chiều rộng của bức ảnh sau khi phóng to là \(x + 8\left( {cm} \right)\).

Diện tích của bức ảnh sau khi phóng to là \(\left( {x + 8} \right)\left( {x + 12} \right)\left( {c{m^2}} \right)\).

Vì diện tích của bức ảnh phóng to tăng gấp đôi diện tích của bức ảnh ban đầu nên ta có phương trình:

\(\left( {x + 8} \right)\left( {x + 12} \right) = 2.96\)

\({x^2} + 20x - 96 = 0\)

Ta có: \(\Delta ' = {10^2} - 1.\left( { - 96} \right) = 196\) nên phương trình có hai nghiệm phân biệt \({x_1} = \frac{{ - 10 + \sqrt {196} }}{1} = 4\) (thỏa mãn); \({x_2} = \frac{{ - 10 - \sqrt {196} }}{1} =  - 24\) (không thỏa mãn).

Vậy chiều dài và chiều rộng của bức ảnh mới lần lượt là: \(12 + 4 = 16\left( {cm} \right);8 + 4 = 12\left( {cm} \right)\).

  • Giải bài 6.26 trang 17 sách bài tập toán 9 - Kết nối tri thức tập 2

    Hình chữ nhật vàng là hình chữ nhật có thể chia thành một hình vuông và hình chữ nhật thứ hai có các kích thước tỉ lệ với các kích thước tương ứng của hình chữ nhật ban đầu (với cùng hệ số tỉ lệ). Tỉ số x giữa chiều dài và chiều rộng của hình chữ nhật vàng được gọi là tỉ lệ vàng. a) Tính tỉ số giữa chiều dài và chiều rộng của hình chữ nhật ABCD và hình chữ nhật EBCF. b) Tìm giá trị chính xác của tỉ lệ vàng bằng cách đặt hai tỉ số ở câu a bằng nhau rồi tìm x.

  • Giải bài 6.28 trang 17 sách bài tập toán 9 - Kết nối tri thức tập 2

    Một phòng họp lúc đầu có một số dãy ghế với tổng cộng 40 chỗ ngồi. Do phải sắp xếp 55 chỗ ngồi cho một cuộc họp nên người ta kê thêm một dãy ghế và mỗi dãy ghế sắp xếp thêm một chỗ ngồi. Hỏi lúc đầu có mấy dãy ghế trong phòng họp đó?

  • Giải bài 6.29 trang 17 sách bài tập toán 9 - Kết nối tri thức tập 2

    Hai anh em Hùng và Nam được mẹ giao nhiệm vụ dọn nhà. Nếu cả hai anh em cùng làm thì mất (2frac{2}{5}) giờ để dọn xong nhà. Nếu làm một mình thì tổng cộng thời gian của cả hai anh em để dọn xong là 10 giờ. Hỏi mỗi người cần bao nhiêu thời gian để dọng xong nhà khi làm một mình? (Biết rằng Hùng làm nhanh hơn Nam).

  • Giải bài 6.30 trang 17, 18 sách bài tập toán 9 - Kết nối tri thức tập 2

    Một cái hộp không có nắp được làm từ mảnh bìa hình chữ nhật có kích thước (30cm times 40cm) bằng cách cắt ở bốn góc của mảnh bìa bốn hình vuông bằng nhau. Diện tích phần đáy hộp là 336(c{m^2}). Tính độ dài mỗi cạnh hình vuông cắt ra ở bốn góc.

  • Giải bài 6.31 trang 18 sách bài tập toán 9 - Kết nối tri thức tập 2

    Một người đi xe máy từ tỉnh A đến tỉnh B. Sau đó 16 phút có một ô tô đi từ B về A với vận tốc lớn hơn vận tốc của xe máy là 15km/h. Xe máy gặp ô tô ở một địa điểm cách B 24km. Tính vận tốc của ô tô, biết rằng quãng đường AB dài 54km.

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close