Giải Bài 68 trang 88 sách bài tập toán 7 - Cánh diều

Cho góc xOy khác góc bẹt. Oz là tia phân giác của góc đó, M là một điểm bất kì thuộc tia Oz. Qua M vẽ đường thẳng a vuông góc với Ox tại A, cắt Oy tại C. Qua M vẽ đường thẳng b vuông góc với Oy tại B, cắt Ox tại D. Chứng minh:

Đề bài

Cho góc xOy khác góc bẹt. Oz là tia phân giác của góc đó, M là một điểm bất kì thuộc tia Oz. Qua M vẽ đường thẳng a vuông góc với Ox tại A, cắt Oy tại C. Qua M vẽ đường thẳng b vuông góc với Oy tại B, cắt Ox tại D. Chứng minh:

a) OM là đường trung trực của đoạn thẳng AB;

b) Tam giác DMC là tam giác cân.

Phương pháp giải - Xem chi tiết

- Chứng minh: O và M cùng nằm trên đường trung trực của BC.

Suy ra: OM là đường trung trực của AB.

- Chứng minh: ΔADM=ΔBCM nên MD = MC

Suy ra tam giác DMC cân tại M.

Lời giải chi tiết

 

a) Vì Oz là tia phân giác của góc xOy nên ^xOz=^zOy

Xét ∆OAM và ∆OBM có

^OAM=^OBM(=90)

OM là cạnh chung,

^AOM=^BOM (do ^xOz=^zOy)

Do đó ∆OAM = ∆OBM (cạnh huyền – góc nhọn).

Suy ra OA = OB và MA = MB (các cặp cạnh tương ứng).

Nên O và M cùng nằm trên đường trung trực của AB.

Vậy OM là đường trung trực của AB.

b) Xét ∆ADM và ∆BCM có

^DAM=^CBM(=90),

AM = BM (chứng minh câu a),

^AMD=^BMC (hai góc đối đỉnh)

Do đó ∆ADM = ∆BCM (cạnh huyền – góc nhọn).

Suy ra MD = MC (hai cạnh tương ứng).

Do đó tam giác CDM cân tại M.

Vậy tam giác DMC cân tại M.

Tham Gia Group Dành Cho Lớp 7 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close