Giải bài tập 1 trang 88 SGK Toán 12 tập 1 - Cánh diềuBảng 8 biểu diễn mẫu số liệu ghép nhóm về số tiền (đơn vị: nghìn đồng) mà 60 khách hàng mua sách ở một cửa hàng trong một ngày a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: A. 50 B. 30 C. 6 D. 69,8 b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: A. 50 B. 40 C. 14,23 D. 70,87 Đề bài Bảng 8 biểu diễn mẫu số liệu ghép nhóm về số tiền (đơn vị: nghìn đồng) mà 60 khách hàng mua sách ở một cửa hàng trong một ngày a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: A. 50 B. 30 C. 6 D. 69,8 b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: A. 50 B. 40 C. 14,23 D. 70,87 Phương pháp giải - Xem chi tiết a) Khoảng biến thiên là hiệu của đầu mút phải nhóm cuối cùng và đầu mút trái nhóm đầu tiên b) Khoảng tứ phân vị là \({Q_3} - {Q_1}\) Lời giải chi tiết a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: \(R = 90 - 40 = 50\) Chọn A b) Số phần tử của mẫu là n = 42 Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 3\), \(c{f_2} = 9\), \(c{f_3} = 28\), \(c{f_4} = 51\), \(c{f_5} = 60\) Ta có: \(\frac{n}{4} = \frac{{60}}{4} = 15\) mà 9 < 15 < 28 suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bẳng 15. Xét nhóm 3 là nhóm [60;70] có s = 60, h = 10, \({n_3} = 19\)và nhóm 2 là nhóm [50;60] có \(c{f_2} = 9\) Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{15 - c{f_2}}}{{{n_3}}}} \right).h = 60 + \left( {\frac{{15 - 9}}{{19}}} \right).10 = \frac{{1200}}{{19}}\) Ta có: \(\frac{{3n}}{4} = \frac{{3.60}}{4} = 45\) mà 28 < 45 < 51 suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bẳng 45. Xét nhóm 4 là nhóm [70;80] có t = 70, l = 10, \({n_4} = 23\)và nhóm 3 là nhóm [60;70] có \(c{f_3} = 28\) Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{45 - c{f_3}}}{{{n_4}}}} \right).l = 70 + \left( {\frac{{45 - 28}}{{23}}} \right).10 = \frac{{1780}}{{23}}\) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = \frac{{1780}}{{23}} - \frac{{1200}}{{19}} \approx 14,23\) Chọn C
|