Giải bài tập 2 trang 42 SGK Toán 12 tập 1 - Cánh diều

đường cong ở hình 29 là đồ thị của hàm số :

Đề bài

 

 

Đường cong ở hình 29 là đồ thị của hàm số:

 

Phương pháp giải - Xem chi tiết

+, Xét đồng biến nghịch biến của hàm số

+, Tìm giao điểm trục tung và trục hoành

+, Xét hàm số

 

Lời giải chi tiết

Hàm số đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)

Đồ thị hàm số giao với trục tung tại điểm (2;0) giao với trục hoành tại (-1;0)

=> Chọn D

 

  • Giải bài tập 3 trang 43 SGK Toán 12 tập 1 - Cánh diều

    Đường cong nào sau đây là đò thị của hàm số (y = frac{{1 - x}}{{x + 1}}) ?

  • Giải bài tập 4 trang 43 SGK Toán 12 tập 1 - Cánh diều

    Đường cong ở hình 30 là đồ thị của hàm số:

  • Giải bài tập 5 trang 43 SGK Toán 12 tập 1 - Cánh diều

    khảo sát về sự biến thiên và vẽ đồ thị của các hàm số sau: (a,;y = 2{x^3} - 3x + 1 b,;y = - {x^3} + 3x - 1) c, ( y = {left( {x - 2} right)^3} + 4) d,(y = - {x^3} + 3{x^2} - 1) e, (y = frac{1}{3}{x^3} + {x^2} + 2x + 1) g,( y = - {x^3} - 3x)

  • Giải bài tập 6 trang 43 SGK Toán 12 tập 1 - Cánh diều

    Khảo sát sự biến thiên của các hàm số sau: a, \(y = \frac{{x - 1}}{{x + 1}}\) b,\(y = \frac{{ - 2x}}{{x + 1}}\) c,\(y=\frac{{{x^2} - 3x + 6}}{{x - 1}}\) d,\(y = \frac{{ - {x^2} + 2x - 4}}{{x - 2}}\) e,\(y = \frac{{2{x^2} + 3x - 5}}{{x + 2}}\) g,\(y = \frac{{{x^2} - 2x - 3}}{{ - x + 2}}\)

  • Giải bài tập 7 trang 44 SGK Toán 12 tập 1 - Cánh diều

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250km so với bề mặt của Mặt Trăng. Trong khoảng 50 giây đầu tiên kể từ khi đốt cháy các tên lửa hãm độ cao hát của con tàu so với bề mặt của mặt trăng được tính gần đúng bởi hàm. (hleft( t right) = - 0,01{t^3} + 1,1{t^2} - 30t + 250) Trong đó t là thời gian tính bằng giây và h là độ cao tính bằng kilômét a) Vẽ đồ thị của hàm số (y = hleft( t right)) với (0{rm{ }} le t le {rm{ }

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close