Giải mục 1 trang 119, 120 SGK Toán 11 tập 1 - Kết nối tri thứcCho hàm số (fleft( x right) = left{ {begin{array}{*{20}{c}}{frac{{{x^2} - 1}}{{x - 1}},;x ne 1}{2;,;x = 1}end{array}} right.) Tính giới hạn (mathop {{rm{lim}}}limits_{x to 1} fleft( x right)) và so sánh giá trị này với (fleft( 1 right))
Lựa chọn câu để xem lời giải nhanh hơn
HĐ1 Video hướng dẫn giải Trả lời câu hỏi Hoạt động 1 trang 119 SGK Toán 11 Kết nối tri thức Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - 1}}{{x - 1}},\;x \ne 1}\\{2\;,\;x = 1}\end{array}} \right.\) Tính giới hạn \(\mathop {{\rm{lim}}}\limits_{x \to 1} f\left( x \right)\) và so sánh giá trị này với \(f\left( 1 \right)\). Phương pháp giải: Hàm số \(f\left( x \right)\) liên tục \({x_0}\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\). Lời giải chi tiết: \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x - 1} \left( {x + 1} \right) = 2\). \(f\left( 1 \right) = 2\). Suy ra \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\). LT1 Video hướng dẫn giải Trả lời câu hỏi Luyện tập 1 trang 120 SGK Toán 11 Kết nối tri thức Xét tính liên tục của hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{ - x,x < 0}\\{0,x = 0}\\{{x^2},x > 0}\end{array}} \right.\) tại điểm \({x_0} = 0\). Phương pháp giải: Hàm số \(f\left( x \right)\) liên tục \({x_0}\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to {x_0^+}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0^- }} f\left( x \right) = f\left( {{x_0}} \right)\). Lời giải chi tiết: Ta có: \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} {x^2} = 0\). \(\mathop {\lim }\limits_{x \to {0^-}} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} {(-x)} = 0\). Suy ra,\(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right)\). Vậy hàm số liên tục tại 0.
|

