Giải mục 2 trang 24, 25 SGK Toán 11 tập 1 - Cánh DiềuVới mỗi số thực x, tồn tại duy nhất điểm M trên đường tròn lượng giác sao cho (left( {OA,OM} right) = xleft( {rad} right)) (Hình 23). Hãy xác định (sin x).
Lựa chọn câu để xem lời giải nhanh hơn
HĐ 3 Với mỗi số thực x, tồn tại duy nhất điểm M trên đường tròn lượng giác sao cho \(\left( {OA,OM} \right) = x\left( {rad} \right)\) (Hình 23). Hãy xác định \(\sin x\). Phương pháp giải: Sử dụng công thức tính sin Lời giải chi tiết: \(\sin x = \frac{{OK}}{{OM}}\) HĐ 4 Cho hàm số \(y = \sin x\) a) Tìm giá trị y tương ứng với giá trị của x trong bảng sau:
b) Trong mặt phẳng Oxy, hãy biểu diễn các điểm \(\left( {x;y} \right)\) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm \(\left( {x;\sin x} \right)\) với \(x \in \left[ { - \pi ;\pi } \right]\) với nối lại ta được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\)(Hình 24).
c) Làm tương tự như trên đối với các đoạn \(\left[ { - 3\pi ; - \pi } \right]\), \(\left[ {\pi ;3\pi } \right]\),...ta có đồ thị hàm số \(y = \sin x\)trên R được biểu diễn ở Hình 25. Phương pháp giải: Sử dụng công thức tính giá trị của sin. Lời giải chi tiết: a)
b) Trong mặt phẳng Oxy, hãy biểu diễn các điểm \(\left( {x;y} \right)\) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm \(\left( {x;\sin x} \right)\) với \(x \in \left[ { - \pi ;\pi } \right]\) với nối lại ta được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\)(Hình 24).
c) Làm tương tự như trên đối với các đoạn \(\left[ { - 3\pi ; - \pi } \right]\), \(\left[ {\pi ;3\pi } \right]\),...ta có đồ thị hàm số \(y = \sin x\)trên R được biểu diễn ở Hình 25.
HĐ 5 Quan sát đồ thị hàm số \(y = \sin x\) ở Hình 25. a) Nêu tập giá trị của hàm số \(y = \sin x\) b) Gốc tọa độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số \(y = \sin x\) c) Bằng cách dịch chuyển đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) song song với trục hoành sang phải theo đoạn có độ dài \(2\pi \), ta có nhận được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ {\pi ;3\pi } \right]\) hay không? Hàm số \(y = \sin x\)có tuần hoàn hay không/ d) Tìm khoảng đồng biến, nghịch biến của hàm số \(y = \sin x\) Phương pháp giải: Sử dụng định nghĩa hàm số sin. Lời giải chi tiết: a) Tập giá trị của hàm số\(y = \sin x\)là \(\left[ { - 1;1} \right]\) b) Đồ thị hàm số \(y = \sin x\)nhận O là tâm đối xứng. Như vậy hàm số \(y = \sin x\) là hàm số lẻ. c) Bằng cách dịch chuyển đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) song song với trục hoành sang phải theo đoạn có độ dài \(2\pi \), ta nhận được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ {\pi ;3\pi } \right]\) Như vậy, hàm số \(y = \sin x\)có tuần hoàn . d) Hàm số \(y = \sin x\)đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right)\) với \(k \in Z\) LT - VD 3 Hàm số \(y = \sin x\) đồng biến hay nghịch biến trên khoảng \(\left( { - \frac{{7\pi }}{2}; - \frac{{5\pi }}{2}} \right)\) Phương pháp giải: Sử dụng khoảng đồng biến, nghịch biến của hàm số \(y = \sin x\) Hàm số \(y = \sin x\)đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right)\) với \(k \in Z\) Lời giải chi tiết: Do \(\left( { - \frac{{7\pi }}{2}; - \frac{{5\pi }}{2}} \right) = \left( {\frac{\pi }{2} - 4\pi ;\frac{{3\pi }}{2} - 4\pi } \right)\) nên hàm số \(y = \sin x\) nghịch biến trên khoảng \(\left( { - \frac{{7\pi }}{2}; - \frac{{5\pi }}{2}} \right)\)
|