Giải mục 2 trang 33, 34, 35 SGK Toán 11 tập 1 - Cánh Diều

a) Đường thẳng (d:y = frac{1}{2}) cắt đồ thị hàm số (y = sin x,x in left[ { - pi ;pi } right]) tại hai giao điểm ({A_0},{B_0}) (Hình 34). Tìm hoành độ của hai giao điểm ({A_0},{B_0}).

Lựa chọn câu để xem lời giải nhanh hơn

HĐ 3

a)     Đường thẳng \(d:y = \frac{1}{2}\) cắt đồ thị hàm số \(y = \sin x,x \in \left[ { - \pi ;\pi } \right]\) tại hai giao điểm \({A_0},{B_0}\) (Hình 34). Tìm hoành độ của hai giao điểm \({A_0},{B_0}\).

 

b)     Đường thẳng \(d:y = \frac{1}{2}\) cắt đồ thị hàm số \(y = \sin x,x \in \left[ {\pi ;3\pi } \right]\) tại hai giao điểm \({A_1},{B_1}\) (Hình 34). Tìm hoành độ của hai giao điểm \({A_1},{B_1}\).

Phương pháp giải:

Dựa vào kiến thức đã học về lượng giác để xác định tọa độ giao điểm

Lời giải chi tiết:

a)     Hoành độ của \({A_0}\) là \(\frac{\pi }{6}\)

Hoành độ của \({B_0}\) là \(\frac{{5\pi }}{6}\)

b)     Hoành độ của \({A_1}\) là \(\frac{{13\pi }}{6}\)

Hoành độ của \({B_1}\) là \(\frac{{17\pi }}{6}\)

LT - VD 3

a) Giải phương trình: \(\sin x = \frac{{\sqrt 3 }}{2}\)

b) Tìm góc lượng giác x sao cho \(\sin x = \sin {55^ \circ }\)

Phương pháp giải:

Sử dụng công thức tổng quát của phương trình sin.

Lời giải chi tiết:

a) \(\sin x = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin x = \sin \frac{\pi }{3} \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = \pi  - \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = \frac{{2\pi }}{3} + k2\pi \end{array} \right.\)

b)

\(\begin{array}{l}\sin x = \sin {55^ \circ } \Leftrightarrow \left[ \begin{array}{l}x = {55^ \circ } + k{.360^ \circ }\\x = {180^ \circ } - {55^ \circ } + k{.360^ \circ }\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = {55^ \circ } + k{.360^ \circ }\\x = {125^ \circ } + k{.360^ \circ }\end{array} \right.\\\end{array}\)

LT - VD 4

Giải phương trình \(\sin 2x = \sin \left( {x + \frac{\pi }{4}} \right)\)

Phương pháp giải:

Sử dụng công thức tổng quát của phương trình sin.

Lời giải chi tiết:

\(\sin 2x = \sin \left( {x + \frac{\pi }{4}} \right) \Leftrightarrow \left[ \begin{array}{l}2x = x + \frac{\pi }{4} + k2\pi \\2x = \pi  - \left( {x + \frac{\pi }{4}} \right) + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\3x = \frac{{3\pi }}{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = \frac{\pi }{4} + \frac{{k2\pi }}{3}\end{array} \right.\)

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close