Giải mục 2 trang 89, 90 SGK Toán 11 tập 2 - Kết nối tri thứca) Dùng định nghĩa, tính đạo hàm của hàm số (y = {x^3} + {x^2}) tại điểm x bất kì.
Lựa chọn câu để xem lời giải nhanh hơn
HĐ 3 Video hướng dẫn giải a) Dùng định nghĩa, tính đạo hàm của hàm số \(y = {x^3} + {x^2}\) tại điểm x bất kì. b) So sánh: \(\left( {{x^3} + {x^2}} \right)'\) và \(\left( {{x^3}} \right)' + \left( {{x^2}} \right)'.\) Phương pháp giải: - \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) nếu tồn tại giới hạn hữu hạn \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) - \({\left( {{x^n}} \right)^,} = n{x^{n - 1}}\) Lời giải chi tiết: a) Với \({x_0}\) bất kì, ta có: \(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^3} + {x^2} - x_0^3 - x_0^2}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x{x_0} + x_0^2} \right) + \left( {x - {x_0}} \right)\left( {x + {x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x{x_0} + x_0^2 + x + {x_0}} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^2} + x{x_0} + x_0^2 + x + {x_0}} \right) = 3x_0^2 + 2{x_0}\end{array}\) Vậy hàm số \(y = {x^3} + {x^2}\) có đạo hàm là hàm số \(y' = 3{x^2} + 2x\) b) \({\left( {{x^3}} \right)^,} + {\left( {{x^2}} \right)^,} = 3{x^2} + 2x\) Do đó \(\left( {{x^3} + {x^2}} \right)'\) = \(\left( {{x^3}} \right)' + \left( {{x^2}} \right)'.\) LT 1 Video hướng dẫn giải Tính đạo hàm của các hàm số sau: a) \(y = \frac{{\sqrt x }}{{x + 1}};\) b) \(y = \left( {\sqrt x + 1} \right)\left( {{x^2} + 2} \right).\) Phương pháp giải: - Sử dụng quy tắc \(\left( {u \pm v} \right)' = u' \pm v';\left( {uv} \right)' = u'v + uv';{\left( {\frac{u}{v}} \right)^,} = \frac{{u'v - uv'}}{{{v^2}}}\) - Sử dụng công thức \({\left( {{x^n}} \right)^,} = n{x^{n - 1}};{\left( {\sqrt x } \right)^,} = \frac{1}{{2\sqrt x }}\) Lời giải chi tiết: a) \(y' = \frac{{\left( {\sqrt x } \right)'\left( {x + 1} \right) - \sqrt x \left( {x + 1} \right)'}}{{{{\left( {x + 1} \right)}^2}}} = \frac{{\frac{{x + 1}}{{2\sqrt x }} - \sqrt x }}{{{{\left( {x + 1} \right)}^2}}} = \frac{{x + 1 - 2x}}{{2\sqrt x {{\left( {x + 1} \right)}^2}}} = \frac{{ - x + 1}}{{2\sqrt x {{\left( {x + 1} \right)}^2}}}\) b) \(y' = \left( {\sqrt x + 1} \right)'\left( {{x^2} + 2} \right) + \left( {\sqrt x + 1} \right)\left( {{x^2} + 2} \right)' = \frac{{{x^2} + 2}}{{2\sqrt x }} + \left( {\sqrt x + 1} \right).2x\)
|