Bài 5 trang 31 SGK Toán 11 tập 1 - Cánh diều

Xét tính chẵn, lẻ của các hàm số:

Đề bài

Xét tính chẵn, lẻ của các hàm số:

a)     \(y = \sin x\cos x\)

b)     \(y = \tan x + \cot x\)

c)     \(y = {\sin ^2}x\)

Phương pháp giải - Xem chi tiết

Dựa vào tính chẵn, lẻ của hàm số.

Lời giải chi tiết

a)     Ta có:

\(\left. \begin{array}{l}f\left( { - x} \right) = \sin \left( { - x} \right).\cos \left( { - x} \right) =  - \sin x.\cos x\\f\left( x \right) = \sin x.\cos x\end{array} \right\} \Rightarrow f\left( { - x} \right) =  - f\left( x \right)\)

ð Hàm số \(y = \sin x\cos x\) là hàm số lẻ

b)     Ta có:

\(\left. \begin{array}{l}f\left( { - x} \right) = \tan \left( { - x} \right) + \cot \left( { - x} \right) =  - \tan x - \cot x\\f\left( x \right) = \tan x + \cot x\end{array} \right\} \Rightarrow f\left( { - x} \right) =  - f\left( x \right)\)

ð Hàm số \(y = \tan x + \cot x\) là hàm số lẻ

c)     Ta có:

 \(\left. \begin{array}{l}f\left( { - x} \right) = {\sin ^2}\left( { - x} \right) = {\left( { - \sin \left( x \right)} \right)^2} = {\sin ^2}x\\f\left( x \right) = {\sin ^2}x\end{array} \right\} \Rightarrow f\left( { - x} \right) = f\left( x \right)\)

ð Hàm số \(y = {\sin ^2}x\) là hàm số chẵn

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close