Bài 7.5 trang 36 SGK Toán 11 tập 2 – Kết nối tri thức

Cho hình chóp S.ABC có đáy là tam giác cân tại A và SA ( bot ) (ABC). Gọi M là trung điểm của BC. Chứng minh rằng:

Đề bài

Cho hình chóp S.ABC có đáy là tam giác cân tại A và SA \( \bot \) (ABC). Gọi M là trung điểm của BC. Chứng minh rằng:

a) BC \( \bot \) (SAM);

b) Tam giác SBC cân tại S.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau thuộc cùng một mặt phẳng thì nó vuông góc với mặt phẳng đó.

Lời giải chi tiết

a) Xét tam giác ABC cân tại A có

AM là đường trung tuyến (M là trung điểm BC)

\( \Rightarrow \) AM là đường cao \( \Rightarrow \) \(AM \bot BC\)

Ta có:

 \(\left. \begin{array}{l}AM \bot BC\\SA \bot BC\left( {SA \bot \left( {ABC} \right)} \right)\\AM \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow BC \bot \left( {SAM} \right)\)

b) \(\left. \begin{array}{l}BC \bot \left( {SAM} \right)\\SM \subset \left( {SAM} \right)\end{array} \right\} \Rightarrow BC \bot SM\)

Xét tam giác SBC có:

+) SM là đường cao \(\left( {BC \bot SM} \right)\)

+) SM là đường trung tuyến (M là trung điểm BC)

\( \Rightarrow \) Tam giác SBC cân tại S.

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close