Nội dung từ Loigiaihay.Com
Tích của hai đơn thức \(6{x^2}yz\) và \( - 2{y^2}{z^2}\) là đơn thức
A. \(4{x^2}{y^3}{z^3}\)
B. \( - 12{x^2}{y^3}{z^3}\)
C. \( - 12{x^3}{y^3}{z^3}\)
D. \(4{x^3}{y^3}{z^3}\).
+ Muốn nhân hai đa thức ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các kết quả với nhau.
\(6{x^2}yz.\left( { - 2{y^2}{z^2}} \right) = \left[ {6.\left( { - 2} \right)} \right].{x^2}.\left( {y.{y^2}} \right).\left( {z.{z^2}} \right) = - 12{x^2}{y^3}{z^3}\)
Chọn B.
Các bài tập cùng chuyên đề
Bài 1 :
Hình hộp chữ nhật \(A\) có chiều rộng \(2x\), chiều dài và chiều cao đề gấp \(k\) lần chiều rộng (Hình 2).
a) Tính diện tích đáy của \(A\).
b) Tính thể tích của \(A\).
Bài 2 :
a) Tính tích: \(3{{\rm{x}}^2}.8{{\rm{x}}^4}\)
b) Nêu quy tắc nhân hai đơn thức cùng một biến
Bài 3 :
Tính tích của hai đơn thức: \({x^3}{y^7}\) và \( - 2{{\rm{x}}^5}{y^3}\).
Bài 4 :
Tính tích: \(\left( { - \dfrac{1}{2}xy} \right).\left( {8{{\rm{x}}^2} - 5{\rm{x}}y + 2{y^2}} \right)\).
Bài 5 :
Tính tích: \(9{{\rm{x}}^5}{y^4}.2{{\rm{x}}^4}{y^2}\).
Bài 6 :
Dựa theo cách làm như trong câu a và câu b của Hoạt động 2, hãy thu gọn tích
\(\left( {3x{y^2}} \right).\left( {5{x^2}{y^3}} \right)\)
Bài 7 :
Thực hiện các phép nhân sau:
a) \(\left( {\frac{1}{3}{x^4}} \right).\left( { - 9x{y^2}z} \right);\)
b)\(\left( {2{x^2}y{z^3}t} \right).\left( {5{x^3}{y^3}{z^4}} \right)\)
Bài 8 :
Tìm tích của các đơn thức sau rồi tìm bậc của đơn thức thu được:
a) \(\frac{2}{{15}}{x^4}{y^2}\) và \(\frac{5}{3}{x^2}{y^4}\);
b) \(\frac{1}{4}x{y^2}z\) và \( - 24xy{z^2}\)
Bài 9 :
Tính tích của các đơn thức sau rồi xác định hệ số, phần biến và bậc của đơn thức thu được:
a) \(\frac{1}{7}{x^5}{y^3}\) và \(\frac{{35}}{9}{x^4}{y^2}\)
b) \(\frac{3}{5}{x^2}{y^2}z\) và \( - 25{x^2}y{z^2}\)
Bài 10 :
Tìm ba số tự nhiên liên tiếp, biết tích của hai số sau lớn hơn tích của hai số trước là 12 đơn vị.
Bài 11 :
Thực hiện các phép nhân:
a) \(\left( {3ab} \right).\left( {5bc} \right)\);
b) \(\left( { - 6{a^2}b} \right).\left( { - \frac{1}{2}a{b^3}} \right)\).
Bài 12 :
Khi thu gọn đơn thức \(3x{y^5}\left( { - \frac{2}{3}{x^3}{y^2}z} \right)\), ta được đơn thức
A. \(2{x^2}{y^3}z\)
B. \( - 2{x^4}{y^7}z\)
C. \( - 2{x^3}{y^6}z\)
D. \( - \frac{2}{9}{x^4}{y^7}z\)
Bài 13 :
Thực hiện phép tính:
a) \({x^3}\left( { - \frac{5}{4}{x^2}y} \right).\left( {\frac{2}{5}{x^3}{y^4}} \right)\)
b) \(\left( { - \frac{3}{4}{x^5}{y^4}} \right)\left( {x{y^2}} \right)\left( { - \frac{8}{9}{x^2}{y^5}} \right)\)
Bài 14 :
Tích của hai đơn thức \(\sqrt 2 {x^3}{y^2}\) và \( - \sqrt 2 x{y^3}z\) là đơn thức
A. \( - 2{x^4}{y^5}\).
B. \(2{x^4}{y^5}z\).
C. \( - 2{x^4}{y^4}z\).
D. \( - 2{x^4}{y^5}z\).
Bài 15 :
Nhân hai đơn thức:
a) \(5{x^2}y\) và \(2x{y^2}\).
b) \(\frac{3}{4}xy\) và \(8{x^3}{y^2}\).
c) \(1,5x{y^2}{z^3}\) và \(2{x^3}{y^2}z\).
Bài 16 :
Tích của hai đơn thức \(6{x^2}yz\) và \( - 2{y^2}{z^2}\) là đơn thức:
A. \(4{x^2}{y^3}{z^3}\).
B. \( - 12{x^2}{y^3}{z^3}\).
C. \( - 12{x^3}{y^3}{z^3}\).
D. \(4{x^3}{y^3}{z^3}\).
Bài 17 :
Nhân hai đơn thức \(5{x^4}{y^2}z\) và \(\frac{{ - 1}}{5}{x^3}y{z^2}\) ta được kết quả là
\( - {x^{12}}{y^2}{z^2}\)
\( - 25{x^{7}}{y^3}{z^3}\)
\({x^{7}}{y^3}{z^3}\)
\( - {x^{7}}{y^3}{z^3}\)
Bài 18 :
Tích của hai đơn thức \(\frac{1}{2}x{y^3}\) và \(x\left( { - 8y} \right)x{z^2}\) có phần hệ số là
\(\frac{1}{2}\).
\( - 8\).
\( - 4\).
\(7\).