Bài tập 28 trang 123 Tài liệu dạy – học Toán 7 tập 2

Giải bài tập Cho tam giác ABC vuông cân tại A. Lấy điểm E thuộc cạnh AC. Trên tia đối của tia AB lấy điểm D sao cho AD = AE. Chứng minh:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho HocTot.XYZ và nhận về những phần quà hấp dẫn

Đề bài

Cho tam giác ABC vuông cân tại A. Lấy điểm E thuộc cạnh AC. Trên tia đối của tia AB lấy điểm D sao cho AD = AE. Chứng minh:

a) DE vuông góc với BC.

b) BE vuông góc với DC.

Lời giải chi tiết

 

a) Gọi H là giao điểm của DE và BC.

Ta có: ^ADE+^AED=90 (∆ADE vuông tại A)

^ADE=^ECH(=45)

^AED=^HEC (hai góc đối đỉnh)

Do đó: ^ECH+^HEC=90

^ECH+^HEC+^EHC=180 (tổng ba góc trong một tam giác)

Nên 90+^EHC=180^EHC=90EHBCDEBC.

b) ∆BDC có: DE là đường cao (DEBC),

CA là đường cao (CAAB,DBA) và DE cắt CA tại E (gt)

Do đó E là trực tâm của ∆BDC.

Vậy BE là đường cao của tam giác ABC. Nên BEDC.

HocTot.XYZ

Tham Gia Group Dành Cho Lớp 7 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

close