Giải bài 14 trang 90 sách bài tập toán 9 - Cánh diều tập 2Chứng minh rằng trong một đường tròn, hai dây không đi qua tâm không thể cắt nhau tại trung điểm mỗi đường. GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho HocTot.XYZ và nhận về những phần quà hấp dẫn Đề bài Chứng minh rằng trong một đường tròn, hai dây không đi qua tâm không thể cắt nhau tại trung điểm mỗi đường. Phương pháp giải - Xem chi tiết Chứng minh ngược lại: Giả sử có hai dây không đi qua tâm không thể cắt nhau tại trung điểm mỗi đường. Sau đó chứng minh giả sử là sai. Lời giải chi tiết Giả sử trái lại có hai dây cung BD và AC (không đi qua tâm O) cắt nhau tại trung điểm mỗi đường. Suy ra tứ giác ABCD là hình bình hành. Do đó \(\widehat {ABC} = \widehat {ADC}\). Mặt khác, tứ giác ABCD nội tiếp nên \(\widehat {ABC} + \widehat {ADC} = {180^o}\). Suy ra \(\widehat {ABC} = \widehat {ADC} = {90^o}\), từ đó suy ra AC là đường kính của đường tròn (O) hay AC đi qua tâm O, mâu thuẫn với điều giả sử. Vậy trong một đường tròn, hai dây không đi qua tâm không thể cắt nhau tại trung điểm mỗi đường.
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
|