Giải bài 5.36 trang 88 sách bài tập toán 11 - Kết nối tri thức với cuộc sốngGiới hạn (mathop {lim }limits_{x to - infty } frac{{sqrt {{x^2} + 2} - x}}{{|x|}}) là GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho HocTot.XYZ và nhận về những phần quà hấp dẫn Đề bài Giới hạn \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 2} - x}}{{x}}\) là A. \( + \infty \) B. 0 C. -2 D. Không tồn tại Phương pháp giải - Xem chi tiết - Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực. - Với c là hằng số, ta có: \(\mathop {\lim }\limits_{x \to + \infty } c = c,\mathop {\lim }\limits_{x \to - \infty } c = c\). - Với k là một số nguyên dương, ta có: \(\mathop {\lim }\limits_{x \to + \infty } \frac{1}{{{x^k}}} = 0,\mathop {\lim }\limits_{x \to - \infty } \frac{1}{{{x^k}}} = 0\). Đối với bài tập trên, ta có thể nhóm hạng tử số mũ cao nhất ra ngoài rồi rút gọn. Lời giải chi tiết Đáp án C \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 2} - x}}{{x}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{|x|\sqrt {1 + \frac{2}{{{x^2}}}} - x}}{{x}}\) \(= \mathop {\lim }\limits_{x \to - \infty } \frac{{ - x\sqrt {1 + \frac{2}{{{x^2}}}} - x}}{{ x}} = \mathop {\lim }\limits_{x \to - \infty } \left( {-\sqrt {1 + \frac{2}{{{x^2}}}} - 1} \right) =- 2\).
|