Giải bài tập 3 trang 15 SGK Toán 12 tập 2 - Cánh diềuNguyên hàm của hàm số (f(x) = frac{{3x}}{{sqrt x }}) bằng: A. (2sqrt[3]{{{x^2}}} + C) B. (frac{{ - 6}}{{sqrt x }} + C) C. (3sqrt x + C) D. (2xsqrt x + C) Đề bài Nguyên hàm của hàm số \(f(x) = \frac{{3x}}{{\sqrt x }}\) bằng: A. \(2\sqrt[3]{{{x^2}}} + C\) B. \(\frac{{ - 6}}{{\sqrt x }} + C\) C. \(3\sqrt x + C\) D. \(2x\sqrt x + C\) Phương pháp giải - Xem chi tiết Áp dụng công thức nguyên hàm của hàm số lũy thừa. Lời giải chi tiết \(\int {\frac{{3x}}{{\sqrt x }}dx} = 3\int {\sqrt x dx} = 3\int {{x^{\frac{1}{2}}}dx} = 3\int {\frac{{{x^{\frac{1}{2} + 1}}}}{{^{\frac{1}{2} + 1}}}dx} = 3\frac{{{x^{\frac{1}{2} + 1}}}}{{^{\frac{1}{2} + 1}}} + C = 2{x^{\frac{3}{2}}} + C = 2x\sqrt x + C\). Chọn D
|